Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

In an isosceles right angled triangle ABCABC, a value of tan(A2)+tan(B2)+tan(C2)\tan \left( \frac{A}{2} \right)+\tan \left( \frac{B}{2} \right)+\tan \left( \frac{C}{2} \right) is

A

21\sqrt{2}-1

B

222\sqrt{2}

C

2212\sqrt{2}-1

D

22+12\sqrt{2}+1

Answer

2212\sqrt{2}-1

Explanation

Solution

Given, an isosceles right angled triangle ABC.Then, A=C=45o\angle A=\angle C={{45}^{o}} and B=90o\angle B={{90}^{o}}
Now, tan(A2)+tan(B2)+tan(C2)\tan \left( \frac{A}{2} \right)+\tan \left( \frac{B}{2} \right)+\tan \left( \frac{C}{2} \right)
=tan(45o2)+tan(90o2)+tan(45o2)=\tan \left( \frac{{{45}^{o}}}{2} \right)+\tan \left( \frac{{{90}^{o}}}{2} \right)+\tan \left( \frac{{{45}^{o}}}{2} \right)
=21+1+21=\sqrt{2}-1+1+\sqrt{2}-1 [tan(22o12)=21]\left[ \because \,\,\,\tan \left( {{22}^{o}}\frac{1}{2} \right)=\sqrt{2}-1 \right]
=221=2\sqrt{2}-1