Solveeit Logo

Question

Physics Question on Youngs double slit experiment

In an interference arrangement similar to Young's double-slit experiment, the slits S1S_1, and S2S_2 are illuminated with coherent microwave sources, each of frequency 10610^6 Hz. The sources are synchronized to have zero phase difference. The slits are separated by a distance d = 150.0 m. The intensity I(θ)(\theta) is measured as a function of θ\theta, where θ\theta is defined as shown. If I0I_0 is the maximum intensity, then I(θ)(\theta) for 0θ0 \le \theta \le90^{\circ} is given by

A

I(θ)=I0/2I (\theta)=I_0/2 for θ\theta=30^{\circ}

B

I(θ)=I0/4I (\theta)=I_0/4 for θ\theta=90^{\circ}

C

I(θ)=I0I (\theta)=I_0 for θ\theta=0^{\circ}

D

I(θ)I (\theta)is constant for all values of θ\theta

Answer

I(θ)=I0I (\theta)=I_0 for θ\theta=0^{\circ}

Explanation

Solution

The intensity of light is I(θ)=I0cos2(δ2)I(\theta)=I_0 cos^2 \big(\frac{\delta}{2}\big)
where, \hspace20mm \delta=\frac{2 \pi}{\lambda}(\Delta x)
\hspace25mm =\big(\frac{2 \pi}{\lambda}\big)(d \, sin \, \theta)
(a) For θ\theta = 30^{\circ}
λ=cv=3×108106=300m\, \, \, \, \lambda=\frac{c}{v}=\frac{3 \times 10^8}{10^6}=300 m and d = 150 m
\hspace10mm \delta=\big(\frac{2 \pi}{300}\big)(150)\big(\frac{1}{2}\big)=\frac{\pi}{2}
δ2=π4\therefore \, \, \, \, \, \, \, \, \frac{\delta}{2}=\frac{\pi}{4}
\therefore \, \, \, \, \, \, \, I(\theta)=I_0 cos^2 \big(\frac{\pi}{4}\big)=\frac{I_0}{2} \hspace10mm [option (a)]
(b) For θ\theta=90^{\circ}
δ=(2π300)(150)(1)=πorδ2=π2andI(θ)=0\delta=\big(\frac{2 \pi}{300}\big)(150)(1)=\pi \, or \, \, \frac{\delta}{2}=\frac{\pi}{2} \, \, and \, \, I(\theta)=0
(c) For θ=0,δ=0orδ2=0\theta=0^\circ,\delta=0 \, \, or \, \, \frac{\delta}{2}=0
\therefore I(\theta)=I_0 \hspace35mm [option (c)]