Solveeit Logo

Question

Question: In an insulating medium (K = 1) volumetric charge density varies with y-coordinates according to the...

In an insulating medium (K = 1) volumetric charge density varies with y-coordinates according to the law r = a.y. A particle of mass m having positive charge q is at point A(0, y0) and projected with velocity v=v0i^\overrightarrow{v} = v_{0}\widehat{i}as shown in figure. At y = 0 electric field is zero. Neglect the gravity and fractional resistance, the slope of trajectory of the particle as a function of y (E is only along y-axis) is –

A

qamε0v02(y3y03)\sqrt{\frac{qa}{m\varepsilon_{0}v_{0}^{2}}(y^{3}–y_{0}^{3})}

B

qa3mε0v02(y3y03)\sqrt{\frac{qa}{3m\varepsilon_{0}v_{0}^{2}}(y^{3}–y_{0}^{3})}

C

qa(y3y03)5mε0v02\sqrt{\frac{qa(y^{3}–y_{0}^{3})}{5m\varepsilon_{0}v_{0}^{2}}}

D

qa(y3y03)2mε0v02\sqrt{\frac{qa(y^{3}–y_{0}^{3})}{2m\varepsilon_{0}v_{0}^{2}}}

Answer

qa3mε0v02(y3y03)\sqrt{\frac{qa}{3m\varepsilon_{0}v_{0}^{2}}(y^{3}–y_{0}^{3})}

Explanation

Solution

Gauss law,

(E + dE) A – EA = ρAdyε0\frac{\rho Ady}{\varepsilon_{0}}

dE = ρdyε0\frac{\rho dy}{\varepsilon_{0}}= aydyε0\frac{aydy}{\varepsilon_{0}}

0EdEy\int_{0}^{E}{dEy}= 0yydy\int_{0}^{y}{ydy}

Ey = ay22ε0\frac{ay^{2}}{2\varepsilon_{0}}

E is not present along x-axis

a = qEm\frac{qE}{m}= qay22mε0\frac{qay^{2}}{2m\varepsilon_{0}}

vdvdyv\frac{dv}{dy} = qay22mε0\frac{qay^{2}}{2m\varepsilon_{0}}

Integrating

vdv=qa2mε0y0yy2dy\int_{}^{}{vdv = \frac{qa}{2m\varepsilon_{0}}\int_{y_{0}}^{y}{y^{2}dy}}v = calculated

Slope = vyvx\frac{v_{y}}{v_{x}} = vv0\frac{v}{v_{0}}