Solveeit Logo

Question

Question: In an experiment to measure the focal length ($f$) of a concave mirror, the object distance ($x$) an...

In an experiment to measure the focal length (ff) of a concave mirror, the object distance (xx) and image distance (yy) measured as (24.0 ±\pm 0.1) cm and (12.0 ±\pm 0.1) cm respectively, then (1x\frac{1}{x} + 1y\frac{1}{y} = 1f\frac{1}{f})

A

Absolute error in focal length is 0.2 cm

B

Percentage error in focal length is 1.7%

C

Percentage error in focal length is 0.7%

D

Percentage error in measurement of object distance is 0.4%

Answer

C, D

Explanation

Solution

  1. Calculate the focal length (ff):

    The given mirror formula is 1f=1x+1y\frac{1}{f} = \frac{1}{x} + \frac{1}{y}.

    Substitute the given values for xx and yy:

    x=24.0x = 24.0 cm y=12.0y = 12.0 cm

    1f=124.0+112.0\frac{1}{f} = \frac{1}{24.0} + \frac{1}{12.0}

    To add the fractions, find a common denominator (24):

    1f=124+224\frac{1}{f} = \frac{1}{24} + \frac{2}{24} 1f=324\frac{1}{f} = \frac{3}{24} 1f=18\frac{1}{f} = \frac{1}{8} f=8f = 8 cm

  2. Calculate the absolute error in focal length (Δf\Delta f):

    To find the absolute error, we use the error propagation formula for the given relation 1f=1x+1y\frac{1}{f} = \frac{1}{x} + \frac{1}{y}.

    Differentiating this equation with respect to ff, xx, and yy:

    1f2df=1x2dx1y2dy-\frac{1}{f^2} df = -\frac{1}{x^2} dx - \frac{1}{y^2} dy

    For maximum possible absolute error, we consider the magnitudes and add them:

    Δff2=Δxx2+Δyy2\frac{\Delta f}{f^2} = \frac{\Delta x}{x^2} + \frac{\Delta y}{y^2}

    So, Δf=f2(Δxx2+Δyy2)\Delta f = f^2 \left( \frac{\Delta x}{x^2} + \frac{\Delta y}{y^2} \right)

    Given:

    x=24.0x = 24.0 cm, Δx=0.1\Delta x = 0.1 cm y=12.0y = 12.0 cm, Δy=0.1\Delta y = 0.1 cm f=8f = 8 cm

    Substitute these values into the formula for Δf\Delta f:

    Δf=(8)2(0.1(24)2+0.1(12)2)\Delta f = (8)^2 \left( \frac{0.1}{(24)^2} + \frac{0.1}{(12)^2} \right) Δf=64(0.1576+0.1144)\Delta f = 64 \left( \frac{0.1}{576} + \frac{0.1}{144} \right)

    To add the fractions, find a common denominator (576):

    Δf=64(0.1576+0.1×4144×4)\Delta f = 64 \left( \frac{0.1}{576} + \frac{0.1 \times 4}{144 \times 4} \right) Δf=64(0.1576+0.4576)\Delta f = 64 \left( \frac{0.1}{576} + \frac{0.4}{576} \right) Δf=64(0.1+0.4576)\Delta f = 64 \left( \frac{0.1 + 0.4}{576} \right) Δf=64(0.5576)\Delta f = 64 \left( \frac{0.5}{576} \right) Δf=64×0.5576\Delta f = \frac{64 \times 0.5}{576} Δf=32576\Delta f = \frac{32}{576} Δf=118\Delta f = \frac{1}{18} cm

    As a decimal, Δf0.0555...\Delta f \approx 0.0555... cm.

    Rounding to one significant figure for error, Δf0.06\Delta f \approx 0.06 cm.

    Rounding to one decimal place, Δf0.1\Delta f \approx 0.1 cm.

    Option A states the absolute error is 0.2 cm, which is incorrect.

  3. Calculate the percentage error in focal length:

    Percentage error in f=(Δff)×100%f = \left( \frac{\Delta f}{f} \right) \times 100\% Percentage error in f=(1/188)×100%f = \left( \frac{1/18}{8} \right) \times 100\% Percentage error in f=(118×8)×100%f = \left( \frac{1}{18 \times 8} \right) \times 100\% Percentage error in f=(1144)×100%f = \left( \frac{1}{144} \right) \times 100\% Percentage error in f=100144%f = \frac{100}{144} \% Percentage error in f=2536%f = \frac{25}{36} \% Percentage error in f0.6944...%f \approx 0.6944... \%

    Rounding to one decimal place, the percentage error in focal length is 0.7%0.7 \%.

    Option B states 1.7%, which is incorrect.

    Option C states 0.7%, which is correct.

  4. Calculate the percentage error in object distance:

    Percentage error in x=(Δxx)×100%x = \left( \frac{\Delta x}{x} \right) \times 100\% Percentage error in x=(0.124.0)×100%x = \left( \frac{0.1}{24.0} \right) \times 100\% Percentage error in x=1024%x = \frac{10}{24} \% Percentage error in x=512%x = \frac{5}{12} \% Percentage error in x0.4166...%x \approx 0.4166... \%

    Rounding to one decimal place, the percentage error in object distance is 0.4%0.4 \%.

    Option D states 0.4%, which is correct.

Therefore, options C and D are correct.