Solveeit Logo

Question

Physics Question on Error analysis

In an experiment to measure focal length (ff) of a convex lens, the least counts of the measuring scales for the position of the object (uu) and for the position of the image (vv) are Δu\Delta u and Δv\Delta v, respectively. The error in the measurement of the focal length of the convex lens will be:

A

Δuu+Δvv\frac{\Delta u}{u} + \frac{\Delta v}{v}

B

f2[Δuu2+Δvv2]f^2 \left[ \frac{\Delta u}{u^2} + \frac{\Delta v}{v^2} \right]

C

2f[Δuu+Δvv]2f \left[ \frac{\Delta u}{u} + \frac{\Delta v}{v} \right]

D

f[Δuu+Δvv]f \left[ \frac{\Delta u}{u} + \frac{\Delta v}{v} \right]

Answer

f2[Δuu2+Δvv2]f^2 \left[ \frac{\Delta u}{u^2} + \frac{\Delta v}{v^2} \right]

Explanation

Solution

Lens Formula and Derivative for Error Analysis:
The lens formula is given by:
1f=1v1u\frac{1}{f} = \frac{1}{v} - \frac{1}{u}

Taking the derivative of both sides with respect to uu and vv, we get:
dff2=dvv2+duu2-\frac{df}{f^2} = -\frac{dv}{v^2} + \frac{du}{u^2}

**Rearranging for dfdf: **
df=f2(dvv2+duu2)df = f^2 \left( \frac{dv}{v^2} + \frac{du}{u^2} \right)

Error in Measurement of Focal Length:
Since dvdv and dudu represent the measurement errors in vv and uu,

respectively, we can substitute dv=Δvdv = \Delta v and du=Δudu = \Delta u:
Δf=f2[Δvv2+Δuu2]\Delta f = f^2 \left[ \frac{\Delta v}{v^2} + \frac{\Delta u}{u^2} \right]

Conclusion:
The error in the measurement of the focal length ff is:
Δf=f2[Δuu2+Δvv2]\Delta f = f^2 \left[ \frac{\Delta u}{u^2} + \frac{\Delta v}{v^2} \right]