Solveeit Logo

Question

Question: In an equilateral triangle the inradius and the circumradius are connected by...

In an equilateral triangle the inradius and the circumradius are connected by

A

r=4Rr = 4 R

B

r=R2r = \frac { R } { 2 }

C

r=R3r = \frac { R } { 3 }

D

None of these

Answer

r=R2r = \frac { R } { 2 }

Explanation

Solution

r=4RsinA2sinB2sinC2r = 4 R \sin \frac { A } { 2 } \cdot \sin \frac { B } { 2 } \cdot \sin \frac { C } { 2 }

For an equilateral triangle, A=B=C=60A = B = C = 60 ^ { \circ }

\therefore r=4Rsin30sin30sin30r = 4 R \sin 30 ^ { \circ } \cdot \sin 30 ^ { \circ } \cdot \sin 30 ^ { \circ } =4R121212= 4 R \cdot \frac { 1 } { 2 } \cdot \frac { 1 } { 2 } \cdot \frac { 1 } { 2 } =R2= \frac { R } { 2 }.