Solveeit Logo

Question

Question: In an ellipse $\frac{x^2}{10}+\frac{y^2}{6}=1$. If focal chords PSP' and QSQ' are at right angles to...

In an ellipse x210+y26=1\frac{x^2}{10}+\frac{y^2}{6}=1. If focal chords PSP' and QSQ' are at right angles to each other, then 1e2(SP)(SP)+1e2(SQ)(SQ)=N15\frac{1-e^2}{(SP)(SP')}+\frac{1-e^2}{(SQ)(SQ')}=\frac{N}{15}. The value of [N] is (where [.] is greatest integer function)

A

4

B

5

C

3

D

2

Answer

4

Explanation

Solution

The equation of the ellipse is x210+y26=1\frac{x^2}{10}+\frac{y^2}{6}=1. Comparing with x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, we have a2=10a^2 = 10 and b2=6b^2 = 6.

The eccentricity ee is given by b2=a2(1e2)b^2 = a^2(1-e^2), so 6=10(1e2)6 = 10(1-e^2), which gives 1e2=610=351-e^2 = \frac{6}{10} = \frac{3}{5}. Thus, e2=135=25e^2 = 1 - \frac{3}{5} = \frac{2}{5}.

The semi-latus rectum ll is given by l=b2a=610l = \frac{b^2}{a} = \frac{6}{\sqrt{10}}. So, l2=(610)2=3610=185l^2 = \left(\frac{6}{\sqrt{10}}\right)^2 = \frac{36}{10} = \frac{18}{5}.

For a focal chord, the reciprocal of the product of the segments from the focus is given by 1(SP)(SP)=1e2cos2θl2\frac{1}{(SP)(SP')} = \frac{1-e^2 \cos^2 \theta}{l^2}, where θ\theta is the angle the chord makes with the major axis.

Let PSPPSP' make an angle θ\theta with the major axis, and QSQQSQ' make an angle ϕ=θ+π2\phi = \theta + \frac{\pi}{2} with the major axis. Then, 1(SP)(SP)=1e2cos2θl2\frac{1}{(SP)(SP')} = \frac{1-e^2 \cos^2 \theta}{l^2} and 1(SQ)(SQ)=1e2cos2(θ+π2)l2=1e2sin2θl2\frac{1}{(SQ)(SQ')} = \frac{1-e^2 \cos^2 (\theta + \frac{\pi}{2})}{l^2} = \frac{1-e^2 \sin^2 \theta}{l^2}.

The given equation is 1e2(SP)(SP)+1e2(SQ)(SQ)=N15\frac{1-e^2}{(SP)(SP')}+\frac{1-e^2}{(SQ)(SQ')}=\frac{N}{15}. Substituting the expressions: (1e2)(1e2cos2θl2+1e2sin2θl2)=N15(1-e^2) \left( \frac{1-e^2 \cos^2 \theta}{l^2} + \frac{1-e^2 \sin^2 \theta}{l^2} \right) = \frac{N}{15} 1e2l2(1e2cos2θ+1e2sin2θ)=N15\frac{1-e^2}{l^2} \left( 1 - e^2 \cos^2 \theta + 1 - e^2 \sin^2 \theta \right) = \frac{N}{15} 1e2l2(2e2(cos2θ+sin2θ))=N15\frac{1-e^2}{l^2} \left( 2 - e^2 (\cos^2 \theta + \sin^2 \theta) \right) = \frac{N}{15} 1e2l2(2e2)=N15\frac{1-e^2}{l^2} (2 - e^2) = \frac{N}{15}

Substitute the values 1e2=351-e^2 = \frac{3}{5}, e2=25e^2 = \frac{2}{5}, and l2=185l^2 = \frac{18}{5}: N15=(35)(225)185=(35)(85)185=2425185=2425×518=245×18=415\frac{N}{15} = \frac{(\frac{3}{5})(2-\frac{2}{5})}{\frac{18}{5}} = \frac{(\frac{3}{5})(\frac{8}{5})}{\frac{18}{5}} = \frac{\frac{24}{25}}{\frac{18}{5}} = \frac{24}{25} \times \frac{5}{18} = \frac{24}{5 \times 18} = \frac{4}{15}.

So, N15=415\frac{N}{15} = \frac{4}{15}, which implies N=4N = 4. The value of [N][N] is [4]=4[4] = 4.