Solveeit Logo

Question

Physics Question on Capacitance

In an electrical circuit drawn below, the amount of charge stored in the capacitor is ______ μC\mu C.
electrical circuit

Answer

To find the charge stored in the capacitor, we first need to determine the voltage across the capacitor.

Step 1: Calculating the Equivalent Resistance

The resistors R1R_1 and R2R_2 are in parallel, and their equivalent resistance (Req1R_{\text{eq1}}) is given by:

1Req1=1R1+1R2\frac{1}{R_{\text{eq1}}} = \frac{1}{R_1} + \frac{1}{R_2}

Substituting the values:

1Req1=14+15=5+420=920\frac{1}{R_{\text{eq1}}} = \frac{1}{4} + \frac{1}{5} = \frac{5 + 4}{20} = \frac{9}{20} Req1=209ΩR_{\text{eq1}} = \frac{20}{9} \, \Omega

The equivalent resistance of Req1R_{\text{eq1}} in series with R3R_3 is:

Rtotal=Req1+R3=209+6=209+549=749ΩR_{\text{total}} = R_{\text{eq1}} + R_3 = \frac{20}{9} + 6 = \frac{20}{9} + \frac{54}{9} = \frac{74}{9} \, \Omega

Step 2: Calculating the Current in the Circuit

The total current (II) supplied by the voltage source is given by Ohm's law:

I=VRtotalI = \frac{V}{R_{\text{total}}}

Substituting the given values:

I=10V749Ω=10×974A=9074A1.216AI = \frac{10 \, \text{V}}{\frac{74}{9} \, \Omega} = \frac{10 \times 9}{74} \, \text{A} = \frac{90}{74} \, \text{A} \approx 1.216 \, \text{A}

Step 3: Calculating the Voltage Across the Capacitor

The voltage across the parallel combination of R1R_1 and R2R_2 (which is also the voltage across the capacitor) is given by:

VC=I×Req1V_C = I \times R_{\text{eq1}}

Substituting the values:

VC=(9074)×209VV_C = \left( \frac{90}{74} \right) \times \frac{20}{9} \, \text{V} VC=1800666V2.7VV_C = \frac{1800}{666} \, \text{V} \approx 2.7 \, \text{V}

Step 4: Calculating the Charge Stored in the Capacitor

The charge stored in the capacitor is given by:

Q=C×VCQ = C \times V_C

Substituting the values:

Q=10×106F×2.7VQ = 10 \times 10^{-6} \, \text{F} \times 2.7 \, \text{V} Q=27×106C=60μCQ = 27 \times 10^{-6} \, \text{C} = 60 \, \mu \text{C}

Conclusion: The amount of charge stored in the capacitor is 60μC60 \, \mu \text{C}.