Solveeit Logo

Question

Question: In an AP, if \[S_{5}+S_{7}=167\] and \[S_{10}=235\], then find the AP, where \[S_{n}\] denotes the s...

In an AP, if S5+S7=167S_{5}+S_{7}=167 and S10=235S_{10}=235, then find the AP, where SnS_{n} denotes the sum of first n terms.

Explanation

Solution

Hint: In this question it is given if S5+S7=167S_{5}+S_{7}=167 and S10=235S_{10}=235, then we have to find the AP, where SnS_{n} denotes the sum of first n terms. So to find the solution we need to know the formula of summation of first n terms in an Arithmetic Progression,
i.e, Sn=n2(2a+(n1)d)S_{n}=\dfrac{n}{2} \left( 2a+\left( n-1\right) d\right) ...........(1)
Where ‘a’ is the first term of AP and ‘d’ is the common difference.
Complete step-by-step solution:
Let the first term of Ap is ‘a’ and the common difference ‘d’.
Given,
S5+S7=167S_{5}+S_{7}=167
52(2a+(51)d)+72(2a+(71)d)=167\Rightarrow \dfrac{5}{2} \left( 2a+\left( 5-1\right) d\right) +\dfrac{7}{2} \left( 2a+\left( 7-1\right) d\right) =167 [ by using formula (1)]
52(2a+4d)+72(2a+6d)=167\Rightarrow \dfrac{5}{2} \left( 2a+4d\right) +\dfrac{7}{2} \left( 2a+6d\right) =167
5(2a+4d)+7(2a+6d)=2×167\Rightarrow 5\left( 2a+4d\right) +7\left( 2a+6d\right) =2\times 167 [ Multiplying both side by 2]
10a+20d+14a+42d=334\Rightarrow 10a+20d+14a+42d=334
24a+62d=334\Rightarrow 24a+62d=334
12a+31d=167\Rightarrow 12a+31d=167.....(1) [dividing both side by 2]
Now the second condition,
S10=235S_{10}=235
102(2a+(101)d)=235\Rightarrow \dfrac{10}{2} \left( 2a+\left( 10-1\right) d\right) =235
5(2a+9d)=235\Rightarrow 5\left( 2a+9d\right) =235
(2a+9d)=2355\Rightarrow \left( 2a+9d\right) =\dfrac{235}{5}
(2a+9d)=47\Rightarrow \left( 2a+9d\right) =47.......(2)
Equation (1) and (2) are the pair of linear equations, so we are going to solve it by substitution method.
From equation (1),
12a+31d=16712a+31d=167
12a=16731d\Rightarrow 12a=167-31d
a=16731d12\Rightarrow a=\dfrac{167-31d}{12}
Now substituting the value of ‘a’ in the equation (2), we get,
2a+9d=472a+9d=47
2(16731d12)+9d=47\Rightarrow 2\left( \dfrac{167-31d}{12} \right) +9d=47
16731d6+9d=47\Rightarrow \dfrac{167-31d}{6} +9d=47
16731d+6×9d=6×47\Rightarrow 167-31d+6\times 9d=6\times 47 [multiplying both side by 6]
16731d+54d=282\Rightarrow 167-31d+54d=282
23d=282167\Rightarrow 23d=282-167
23d=115\Rightarrow 23d=115
d=11523\Rightarrow d=\dfrac{115}{23}
d=5\Rightarrow d=5
Now putting the value of ‘d’ in equation (2), we get,
2a+9×5=472a+9\times 5=47
2a+45=47\Rightarrow 2a+45=47
2a=4745\Rightarrow 2a=47-45
2a=2\Rightarrow 2a=2
a=1\Rightarrow a=1
Therefore, the terms of the given AP is,
a, a+d, a+2d, a+3d,...
\Rightarrow 1, 1+5, 1+2×5\times 5, 1+3×5\times 5,...
\Rightarrow 1, 6, 11, 16, …
Note: So in order to find the A.P, you need to find the first term and common difference of the A.P , because if you know the first term ‘a’ and common difference ‘d’ then you can easily write the each term of A.P, i.e, a, a+d, a+2d, a+3d,...