Solveeit Logo

Question

Question: In an AP: (i) Given \[a = 5,d = 3,{a_n} = 50\], find n and \[{S_n}\]. (ii) Given \[a = 7,{a_{13}...

In an AP:
(i) Given a=5,d=3,an=50a = 5,d = 3,{a_n} = 50, find n and Sn{S_n}.
(ii) Given a=7,a13=35a = 7,{a_{13}} = 35, find d and S13{S_{13}}.
(iii) Given a12=37,d=3{a_{12}} = 37,d = 3, find a and S12{S_{12}}.
(iv) Given a3=15,S10=125{a_3} = 15,{S_{10}} = 125, find d and a10{a_{10}}.
(v) Given d=5,S9=75d = 5,{S_9} = 75, find a and a9{a_9}.
(vi) Given a=2,d=8,Sn=90a = 2,d = 8,{S_n} = 90, find n and an{a_n}.
(vii) Given a=8,an=62,Sn=210a = 8,{a_n} = 62,{S_n} = 210, find n and d.
(viii) Given an=4,d=2,Sn=14{a_n} = 4,d = 2,{S_n} = - 14, find n and a.
(ix) Given a=3,n=8,S=192a = 3,n = 8,S = 192, find d.
(x) Given l=28,S=144l = 28,S = 144, and there are a total 9 terms. Find a.

Explanation

Solution

Use the formula of Arithmetic progression sequence for the nth terms that is an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d where, a initial term of the AP and d is the common difference of successive numbers. Calculate the value of n. We use the formula of the sum of n terms in Arithmetic progression that is Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]. Calculate the sum of the AP Sn{S_n}.

Complete step by step answer:
Given data:
(i) a=5,d=3,an=50a = 5,d = 3,{a_n} = 50.
Now, we know about the Arithmetic progression sequence for the nth terms is:
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
Now, calculate the value of nn. Substitute the value of a=5,d=3,an=50a = 5,d = 3,{a_n} = 50 in an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
50=5+(n1)(3)\Rightarrow 50 = 5 + \left( {n - 1} \right)\left( 3 \right)
45=3n3\Rightarrow 45 = 3n - 3
3n=48\Rightarrow 3n = 48
n=16\Rightarrow n= 16
Hence, the value of n is 16.
Now, we know about the formula of the sum of n terms in an Arithmetic progression that is:
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Simplify the above equation by substituting an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]

Now, calculate the value of Sn{S_n} where a=5,n=16,an=50a = 5,n = 16,{a_n} = 50. Substitute the values in Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right].
S16=162[5+50]\Rightarrow {S_{16}} = \dfrac{{16}}{2}\left[ {5 + 50} \right]
=8[55]= 8\left[ {55} \right]
=440= 440
Hence, the value of Sn{S_n} is 440440.

(ii) a=7,a13=35a = 7,{a_{13}} = 35
Now, we know about the Arithmetic progression sequence for the nth terms is:
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
Now, calculate the value of dd. Substitute the value of a=7,a13=35a = 7,{a_{13}} = 35 in an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
35=7+(131)d\Rightarrow 35 = 7 + \left( {13 - 1} \right)d
28=12d\Rightarrow 28 = 12d
d=2812\Rightarrow d = \dfrac{{28}}{{12}}
d=73\Rightarrow d = \dfrac{7}{3}
Hence, the value of d is 73\dfrac{7}{3}.
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Simplify the above equation by substituting an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]
Now, calculate the value of Sn{S_n} where a=7,a13=35,andd=73a = 7,{a_{13}} = 35,{\rm{ and }}d = \dfrac{7}{3}. Substitute the values in Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right].
S13=132[7+35]\Rightarrow {S_{13}} = \dfrac{{13}}{2}\left[ {7 + 35} \right]
=6.5[42]= 6.5\left[ {42} \right]
=273= 273
Hence, the value of S13{S_{13}} is 273273.

(iii) a12=37,d=3{a_{12}} = 37,d = 3.
Now, we know about the Arithmetic progression sequence for the nth terms is:
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
Now, calculate the value of aa. Substitute the value of a12=37,d=3{a_{12}} = 37,d = 3 in an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
37=a+(121)(3)\Rightarrow 37 = a + \left( {12 - 1} \right)\left( 3 \right)
37=a+33\Rightarrow 37 = a + 33
a=4\Rightarrow a = 4
Hence, the value of a is 4.
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Simplify the above equation by substituting an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]
Now, calculate the value of Sn{S_n} where a12=37,d=3,anda=4{a_{12}} = 37,d = 3,{\rm{ and }}a = 4. Substitute the values in Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right].
S12=122[4+37]\Rightarrow {S_{12}} = \dfrac{{12}}{2}\left[ {4 + 37} \right]
=6[41]= 6\left[ {41} \right]
=246= 246
Hence, the value of S12{S_{12}} is 246246.

(iv) a3=15,S10=125{a_3} = 15,{S_{10}} = 125
Now, we know about the Arithmetic progression sequence for the nth terms is:
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
The general formula of the AP is a,a+d,a+2d,a+3d,...a,a + d,a + 2d,a + 3d,.... Now, a3=a+2d{a_3} = a + 2d and substitute the value of a3=15{a_3} = 15.
15=a+2d\Rightarrow 15 = a + 2d
a=152d\Rightarrow a = 15 - 2d
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Now, calculate the value of aandda{\rm{ and }}d. Substitute the values a3=15,S10=125,anda=152d{a_3} = 15,{S_{10}} = 125,{\rm{ and }}a = 15 - 2d in Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right].
125=102[2(152d)+(101)d]\Rightarrow 125 = \dfrac{{10}}{2}\left[ {2\left( {15 - 2d} \right) + \left( {10 - 1} \right)d} \right]
1255=304d+9d\Rightarrow \dfrac{{125}}{5} = 30 - 4d + 9d
2530=5d\Rightarrow 25 - 30 = 5d
d=1\Rightarrow d = - 1
Hence, the value of d is 1 - 1.
Substitute the value d=1d = - 1 in a=152da = 15 - 2d.
a=152(1)\Rightarrow a = 15 - 2\left( { - 1} \right)
a=17\Rightarrow a = 17
Hence, the value of aa is 17.
Now, we know about the Arithmetic progression sequence for the nth terms is:
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
Now, calculate the value of aa. Substitute the value of a=17,d=1,andn=10a = 17,d = - 1,{\rm{ and }}n = 10 in an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
a10=17+(101)(1)\Rightarrow {a_{10}} = 17 + \left( {10 - 1} \right)\left( { - 1} \right)
=179= 17 - 9
=8= 8
Hence, the value of a10{a_{10}} is 8.

(v) d=5,S9=75d = 5,{S_9} = 75
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Now, calculate the value of aandda{\rm{ and }}d. Substitute the values d=5,S9=75d = 5,{S_9} = 75 in {S_n} = $\dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right].
75=92[2a+(91)5]\Rightarrow 75 = \dfrac{9}{2}\left[ {2a + \left( {9 - 1} \right)5} \right]
75(29)=2a+40\Rightarrow 75\left( {\dfrac{2}{9}} \right) = 2a + 40
23.3333=2a\Rightarrow - 23.3333 = 2a
d=11.6667\Rightarrow d = - 11.6667
Hence, the value of d is 11.6667 - 11.6667.
Now, we know about the Arithmetic progression sequence for the nth terms is:
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
Now, calculate the value of a9{a_9}. Substitute the value of d=5,S9=75,and11.6667d = 5,{S_9} = 75,{\rm{ and }} - 11.6667 in an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
a9=11.6667+(91)(5)\Rightarrow {a_9} = - 11.6667 + \left( {9 - 1} \right)\left( 5 \right)
=11.6667+40= - 11.6667 + 40
=28.3333= 28.3333
Hence, the value of a9{a_9} is 28.3333.

(vi) a=2,d=8,Sn=90a = 2,d = 8,{S_n} = 90
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Now, calculate the value of aandda{\rm{ and }}d. Substitute the values a=2,d=8,andSn=90a = 2,d = 8,{\rm{ and }}{S_n} = 90 in Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right].
90=n2[2(2)+(n1)8]\Rightarrow 90 = \dfrac{n}{2}\left[ {2\left( 2 \right) + \left( {n - 1} \right)8} \right]
90=n2(4+8n8)\Rightarrow 90 = \dfrac{n}{2}\left( {4 + 8n - 8} \right)
180=4n+8n2\Rightarrow 180 = - 4n + 8{n^2}
2n2n45=0\Rightarrow 2{n^2} - n - 45 = 0
On further simplification, the following is obtained:
2n210n+9n45=0\Rightarrow 2{n^2} - 10n + 9n - 45 = 0
2n(n5)+9(n5)=0\Rightarrow 2n\left( {n - 5} \right) + 9\left( {n - 5} \right) = 0
(n5)(2n+9)=0\Rightarrow \left( {n - 5} \right)\left( {2n + 9} \right) = 0
n=5,92\Rightarrow n = 5, - \dfrac{9}{2}
Hence, the values of n are 5,925, - \dfrac{9}{2}.
Now, we know about the Arithmetic progression sequence for the nth terms is:
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
Now, calculate the value of an{a_n}. Substitute the value of a=2,d=8,andn=5a = 2,d = 8,{\rm{ and }}n = 5 in an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
a5=2+(51)(8)\Rightarrow {a_5} = 2 + \left( {5 - 1} \right)\left( 8 \right)
=2+32= 2 + 32
=34= 34
Hence, the value of a5{a_5} is 34.

(vii) a=8,an=62,Sn=210a = 8,{a_n} = 62,{S_n} = 210
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Simplify the above equation by substituting an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]
Now, calculate the value of Sn{S_n} where a=8,an=62,andSn=210a = 8,{a_n} = 62,{\rm{ and }}{S_n} = 210. Substitute the values in Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right].
210=n2[8+62]\Rightarrow 210 = \dfrac{n}{2}\left[ {8 + 62} \right]
420=n[70]\Rightarrow 420 = n\left[ {70} \right]
n=42070\Rightarrow n = \dfrac{{420}}{{70}}
n=6\Rightarrow n= 6
Hence, the value of nn is 66.
Now, we know about the Arithmetic progression sequence for the nth terms is:
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
Now, calculate the value of an{a_n}. Substitute the value of a=8,an=62,andn=6a = 8,{a_n} = 62,{\rm{ and }}n = 6 in an=a+(n1)d\Rightarrow {a_n} = a + \left( {n - 1} \right)d.
62=8+(61)(d)\Rightarrow 62 = 8 + \left( {6 - 1} \right)\left( d \right)
54=5d\Rightarrow 54 = 5d
d=545\Rightarrow d = \dfrac{{54}}{5}
Hence, the value of dd is 545\dfrac{{54}}{5}.

(viii) an=4,d=2,Sn=14{a_n} = 4,d = 2,{S_n} = - 14
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Simplify the above equation by substituting an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right]
Now, calculate the value of Sn{S_n} where an=4,d=2,andSn=14{a_n} = 4,d = 2,{\rm{ and }}{S_n} = - 14. Substitute the values in Sn=n2[a+an]{S_n} = \dfrac{n}{2}\left[ {a + {a_n}} \right].
14=n2[a+4]\Rightarrow - 14 = \dfrac{n}{2}\left[ {a + 4} \right]
28=n(a+4)\Rightarrow - 28 = n\left( {a + 4} \right)
n=28a+4\Rightarrow n = - \dfrac{{28}}{{a + 4}}
Now, we know about the Arithmetic progression sequence for the nth terms is:
an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d
Now, calculate the value of aa. Substitute the value of an=4,d=2,andn=28a+4{a_n} = 4,d = 2,{\rm{ and }}n = - \dfrac{{28}}{{a + 4}} in an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.
4=a+(28a+41)(2)\Rightarrow 4 = a + \left( { - \dfrac{{28}}{{a + 4}} - 1} \right)\left( 2 \right)
4(a+4)=a(a+4)562a8\Rightarrow 4\left( {a + 4} \right) = a\left( {a + 4} \right) - 56 - 2a - 8
4a+16=a2+4a642a\Rightarrow 4a + 16 = {a^2} + 4a - 64 - 2a
a22a80=0\Rightarrow {a^2} - 2a - 80 = 0
Further simplification, the following is obtained:
a210a+8a80=0\Rightarrow {a^2} - 10a + 8a - 80 = 0
a(a10)+8(a10)=0\Rightarrow a\left( {a - 10} \right) + 8\left( {a - 10} \right) = 0
(a10)(a+8)=0\Rightarrow \left( {a - 10} \right)\left( {a + 8} \right) = 0
a=10,8\Rightarrow a = 10, - 8
Hence, the value of aa is 10and810{\rm{ and }} - 8.
Now, substitute the value of a=10and8a = 10{\rm{ and }} - 8 in n=28a+4n = - \dfrac{{28}}{{a + 4}}.
n=2810+4\Rightarrow n = - \dfrac{{28}}{{10 + 4}}
n=2\Rightarrow n = - 2
n=288+4\Rightarrow n = - \dfrac{{28}}{{ - 8 + 4}}
n=7\Rightarrow n= 7
Here, the value of n cannot be negative. So, n=2n = - 2 is not possible.
Hence, the value of nn is 77 and the value of a is 8 - 8.

(ix) a=3,n=8,S=192a = 3,n = 8,S = 192
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Now, calculate the value of aandda{\rm{ and }}d. Substitute the values a=3,n=8,andS=192a = 3,n = 8,{\rm{ and }}S = 192 in Sn=n2[2a+(n1)d]\Rightarrow {S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right].
192=82[2(3)+(81)d]\Rightarrow 192 = \dfrac{8}{2}\left[ {2\left( 3 \right) + \left( {8 - 1} \right)d} \right]
192=24+28d\Rightarrow 192 = 24 + 28d
168=28d\Rightarrow 168 = 28d
d=6\Rightarrow d = 6
Hence, the value of d is 6.

(x) l=28,S=144l = 28,S = 144 and there are total 9 terms.
Now, we know about the formula of the sum of n terms in Arithmetic progression that is:
Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right]
Simplify the above equation by substituting an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d. Where, an{a_n} shows the last number which can also denoted by l. that is an=l{a_n} = l
Sn=n2[a+l]\Rightarrow {S_n} = \dfrac{n}{2}\left[ {a + l} \right]
Now, calculate the value of Sn{S_n} where l=28andS=144l = 28{\rm{ and }}S = 144. Substitute the values in Sn=n2[a+l]{S_n} = \dfrac{n}{2}\left[ {a + l} \right].
144=92[a+28]\Rightarrow 144 = \dfrac{9}{2}\left[ {a + 28} \right]
32=a+28\Rightarrow 32 = a + 28
a=4\Rightarrow a = 4
Hence, the value of a is 4.

Note:
The general equation of the Arithmetic progression is a,a+d,a+2d,a+3d,...a,a + d,a + 2d,a + 3d,..., where a is the initial term of the AP and d is the common difference of successive numbers. Make sure use the formula of the sum of n terms in Arithmetic progression that is Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] and use the Arithmetic progression sequence for the nth terms that is an=a+(n1)d{a_n} = a + \left( {n - 1} \right)d.