Solveeit Logo

Question

Mathematics Question on Sum of First n Terms of an AP

In an AP:

  1. given a = 5, d = 3, an = 50, find n and Sn
  2. given a = 7, a13 = 35, find d and S13.
  3. given a12 = 37, d = 3, find a and S12.
  4. given a3 = 15, S10 = 125, find d and a10.
  5. given d = 5, S9 = 75, find a and a9.
  6. given a = 2, d = 8, Sn = 90, find n and an .
  7. given a = 8, an = 62, Sn = 210, find n and d.
  8. given an = 4, d = 2, Sn = –14, find n and a.
  9. given a = 3, n = 8, S = 192, find d.
  10. given l = 28, S = 144, and there are total 9 terms. Find a.
Answer

(i) Given that, a=5a = 5, d=3d = 3, an=50a_n = 50
As an=a+(n1)da_n = a + (n − 1)d,
50=5+(n1)3∴ 50 = 5 + (n − 1)3
45=(n1)345 = (n − 1)3
15=n115 = n − 1
n=16n = 16
Sn=n2[a+an]S_n =\frac n2[a + a_n]

S16=162[5+50]S_{16} = \frac {16}{2}[5 + 50]
S16=8×55S_{16} = 8 \times 55
S16=440S_{16} = 440


(ii) Given that, a=7a = 7, a13=35a_{13} = 35
As, an=a+(n1)da_n = a + (n − 1) d
a13=a+(131)d∴ a_{13} = a + (13 − 1) d
35=7+12d35 = 7 + 12 d
357=12d35 − 7 = 12d
28=12d28 = 12d
d=2812d = \frac {28}{12}

d=73d = \frac 73
Sn=n2[a+an]S_n = \frac n2[a + a_n]

S13=n2[a+a13]S_{13} =\frac n2[a + a_{13}]

S13=132[7+35]S_{13}= \frac {13}{2}[7 + 35]

S13=13×422S_{13} = \frac {13 \times 42}{2}
S13=13×21S_{13} = 13 \times 21
S13=273S_{13} = 273


(iii) Given that, a12=37a_{12} = 37, d=3d = 3
As an=a+(n1)da_n = a + (n − 1)d
a12=a+(121)3a_{12}= a + (12 − 1)3
37=a+3337 = a + 33
a=4a = 4
Sn=n2[a+an]S_n = \frac n2[a + a_n]

S12=122[4+37]S_{12} = \frac {12}{2}[4 + 37]
S12=6×41S_{12}= 6 \times 41
S12=246S_{12} = 246


(iv) Given that, a3=15a_3 = 15, S10=125S_{10} = 125
As, an=a+(n1)da_n = a + (n − 1)d
a3=a+(31)a_3 = a + (3 − 1)
15=a+2d15 = a + 2d ……….(i)
Sn=n2[2a+(n1)d]S_n = \frac {n}{2}[2a + (n-1)d]

S10=102[2a+(101)d]S_{10} = \frac {10}{2}[2a + (10-1)d]
125=5[2a+9d]125 = 5[2a + 9d]
25=2a+9d25 = 2a + 9d ……….(ii)
On multiplying equation (i) by 2, we obtain
30=2a+4d30 = 2a + 4d ………..(iii)
On subtracting equation (iii) from (ii), we obtain
5=5d−5 = 5d
d=1d = −1
From equation (i),
15=a+2(1)15 = a + 2(−1)
15=a215 = a − 2
a=17a = 17
a10=a+(101)da_{10} = a + (10 − 1)d
a10=17+(9)(1)a_{10}= 17 + (9) (−1)
a10=179=8a_{10} = 17 − 9 = 8


(v) Given that, d=5d = 5, S9=75S_9 = 75
As, Sn=n2[2a+(n1)d]S_n = \frac {n}{2}[2a + (n-1)d]

S9=92[2a+(91)5]S_9 =\frac 92[2a + (9-1)5]

75=92(2a+40)75 = \frac 92(2a + 40)
25=3(a+20)25 = 3(a + 20)
25=3a+6025 = 3a + 60
3a=25603a = 25 − 60
a=353a = -\frac {35}{3}
an=a+(n1)da_n = a + (n − 1)d
a9=a+(91)5a_9 = a + (9 − 1)5
a9=353+8×5a_9 = -\frac {35}{3} + 8 \times 5

a9=353+40a_9 = -\frac {35}{3} + 40

a9=35+1203a_9 = \frac {-35+120}{3}

a9=853a_9 = \frac {85}{3}


(vi) Given that, a=2a = 2, d=8d = 8, Sn=90S_n = 90
As, Sn=n2[2a+(n1)d]S_n = \frac {n}{2}[2a + (n-1)d]

90=n2[2×2+(n1)8]90 = \frac n2[2 \times 2 + (n-1)8]

90=n2[4+(n1)8]90 = \frac n2[4 + (n-1)8]
90=n[2+(n1)4]90 = n [2 + (n − 1)4]
90=n[2+4n4]90 = n [2 + 4n − 4]
90=n(4n2)90 = n (4n − 2)
90=4n22n90= 4n^2 − 2n
4n22n90=04n^2 − 2n − 90 = 0
4n220n+18n90=04n^2 − 20n + 18n − 90 = 0
4n(n5)+18(n5)=04n (n − 5) + 18 (n − 5) = 0
(n5)(4n+18)=0(n − 5) (4n + 18) = 0
Either n5=0n − 5 = 0 or 4n+18=04n + 18 = 0
n=5n = 5 or n=184=92n = -\frac {18}{4} = -\frac {9}{2}
However, nn can neither be negative nor fractional.
Therefore, n=5n = 5
an=a+(n1)da_n = a + (n − 1)d
a5=2+(51)8a_5 = 2 + (5 − 1)8
a5=2+4×8a_5= 2 + 4 \times 8
a5=2+32a_5= 2 + 32
a5=34a_5 = 34


(vii) Given that, a=8a = 8, an=62a_n = 62, Sn=210S_n = 210
Sn=n2[a+an]Sn = \frac {n}{2}[a + a_n]

210=n2[8+62]210 = \frac n2[8 + 62]

210=n2×70210 = \frac n2 \times 70
n=6n = 6
an=a+(n1)da_n = a + (n − 1)d
62=8+(61)d62 = 8 + (6 − 1)d
628=5d62 − 8 = 5d
54=5d54 = 5d
d=545d = \frac {54}{5}


(viii) Given that, an=4,d=2,Sn=14a_n = 4, d = 2, S_n = −14
an=a+(n1)da_n = a + (n − 1)d
4=a+(n1)24 = a + (n − 1)2
4=a+2n24 = a + 2n − 2
a+2n=6a + 2n = 6
a=62na = 6 − 2n …….(i)
Sn=n2[a+an]S_n = \frac n2[a + a_n]

14=n2[a+4]-14 = \frac n2[a + 4]
28=n(a+4)−28 = n (a + 4)
28=n(62n+4)−28 = n (6 − 2n + 4) {From equation (i)}
28=n(2n+10)−28 = n (− 2n + 10)
28=2n2+10n−28 = − 2n^2 + 10n
2n210n28=02n^2 − 10n − 28 = 0
n25n14=0n^2 − 5n −14 = 0
n27n+2n14=0n^2 − 7n + 2n − 14 = 0
n(n7)+2(n7)=0n (n − 7) + 2(n − 7) = 0
(n7)(n+2)=0(n − 7) (n + 2) = 0
Either, n7=0n − 7 = 0 or n+2=0n + 2 = 0
n=7n = 7 or n=2n = −2
However, nn can neither be negative nor fractional.
Therefore, n=7n = 7 From equation (i), we obtain
a=62na = 6 − 2n
a=62×7a = 6 − 2 \times 7
a=614a= 6 − 14
a=8a= −8


(ix) Given that, a=3a = 3, n=8n = 8, S=192S = 192
Sn=n2[2a+(n1)d]S_n = \frac n2[2a + (n-1)d]

192=82[2×3+(81)d]192 = \frac 82[2 \times 3 + (8-1)d]
192=4[6+7d]192 = 4 [6 + 7d]
48=6+7d48 = 6 + 7d
42=7d42 = 7d
d=6d = 6


(x) Given that, l=28l = 28, S=144S = 144 and there are total of 99 terms.
Sn=n2(a+l)S_n =\frac n2(a+l)

144=92(a+28)144 = \frac 92(a+28)

16=12(a+28)16 = \frac 12(a+28)
16×2=a+2816 × 2 = a + 28
32=a+2832 = a + 28
a=3228a = 32 - 28
a=4a = 4