Question
Mathematics Question on Sum of First n Terms of an AP
In an AP:
- given a = 5, d = 3, an = 50, find n and Sn
- given a = 7, a13 = 35, find d and S13.
- given a12 = 37, d = 3, find a and S12.
- given a3 = 15, S10 = 125, find d and a10.
- given d = 5, S9 = 75, find a and a9.
- given a = 2, d = 8, Sn = 90, find n and an .
- given a = 8, an = 62, Sn = 210, find n and d.
- given an = 4, d = 2, Sn = –14, find n and a.
- given a = 3, n = 8, S = 192, find d.
- given l = 28, S = 144, and there are total 9 terms. Find a.
(i) Given that, a=5, d=3, an=50
As an=a+(n−1)d,
∴50=5+(n−1)3
45=(n−1)3
15=n−1
n=16
Sn=2n[a+an]
S16=216[5+50]
S16=8×55
S16=440
(ii) Given that, a=7, a13=35
As, an=a+(n−1)d
∴a13=a+(13−1)d
35=7+12d
35−7=12d
28=12d
d=1228
d=37
Sn=2n[a+an]
S13=2n[a+a13]
S13=213[7+35]
S13=213×42
S13=13×21
S13=273
(iii) Given that, a12=37, d=3
As an=a+(n−1)d
a12=a+(12−1)3
37=a+33
a=4
Sn=2n[a+an]
S12=212[4+37]
S12=6×41
S12=246
(iv) Given that, a3=15, S10=125
As, an=a+(n−1)d
a3=a+(3−1)
15=a+2d ……….(i)
Sn=2n[2a+(n−1)d]
S10=210[2a+(10−1)d]
125=5[2a+9d]
25=2a+9d ……….(ii)
On multiplying equation (i) by 2, we obtain
30=2a+4d ………..(iii)
On subtracting equation (iii) from (ii), we obtain
−5=5d
d=−1
From equation (i),
15=a+2(−1)
15=a−2
a=17
a10=a+(10−1)d
a10=17+(9)(−1)
a10=17−9=8
(v) Given that, d=5, S9=75
As, Sn=2n[2a+(n−1)d]
S9=29[2a+(9−1)5]
75=29(2a+40)
25=3(a+20)
25=3a+60
3a=25−60
a=−335
an=a+(n−1)d
a9=a+(9−1)5
a9=−335+8×5
a9=−335+40
a9=3−35+120
a9=385
(vi) Given that, a=2, d=8, Sn=90
As, Sn=2n[2a+(n−1)d]
90=2n[2×2+(n−1)8]
90=2n[4+(n−1)8]
90=n[2+(n−1)4]
90=n[2+4n−4]
90=n(4n−2)
90=4n2−2n
4n2−2n−90=0
4n2−20n+18n−90=0
4n(n−5)+18(n−5)=0
(n−5)(4n+18)=0
Either n−5=0 or 4n+18=0
n=5 or n=−418=−29
However, n can neither be negative nor fractional.
Therefore, n=5
an=a+(n−1)d
a5=2+(5−1)8
a5=2+4×8
a5=2+32
a5=34
(vii) Given that, a=8, an=62, Sn=210
Sn=2n[a+an]
210=2n[8+62]
210=2n×70
n=6
an=a+(n−1)d
62=8+(6−1)d
62−8=5d
54=5d
d=554
(viii) Given that, an=4,d=2,Sn=−14
an=a+(n−1)d
4=a+(n−1)2
4=a+2n−2
a+2n=6
a=6−2n …….(i)
Sn=2n[a+an]
−14=2n[a+4]
−28=n(a+4)
−28=n(6−2n+4) {From equation (i)}
−28=n(−2n+10)
−28=−2n2+10n
2n2−10n−28=0
n2−5n−14=0
n2−7n+2n−14=0
n(n−7)+2(n−7)=0
(n−7)(n+2)=0
Either, n−7=0 or n+2=0
n=7 or n=−2
However, n can neither be negative nor fractional.
Therefore, n=7 From equation (i), we obtain
a=6−2n
a=6−2×7
a=6−14
a=−8
(ix) Given that, a=3, n=8, S=192
Sn=2n[2a+(n−1)d]
192=28[2×3+(8−1)d]
192=4[6+7d]
48=6+7d
42=7d
d=6
(x) Given that, l=28, S=144 and there are total of 9 terms.
Sn=2n(a+l)
144=29(a+28)
16=21(a+28)
16×2=a+28
32=a+28
a=32−28
a=4