Solveeit Logo

Question

Question: In an ambiguous case, If the remaining angles of the triangles formed with a, b and A be \(B _ { 2 ...

In an ambiguous case, If the remaining angles of the triangles

formed with a, b and A be B2,C2B _ { 2 } , C _ { 2 } then

sinC1sinB1+sinC2sinB2=\frac { \sin C _ { 1 } } { \sin B _ { 1 } } + \frac { \sin C _ { 2 } } { \sin B _ { 2 } } =

A

2cosA2 \cos A

B

cosA\cos A

C

2sinA2 \sin A

D

sinA

Answer

2cosA2 \cos A

Explanation

Solution

In and ACB2A C B _ { 2 }

sinC1sinB1\frac { \sin C _ { 1 } } { \sin B _ { 1 } } = AB1AC=c1b\frac { A B _ { 1 } } { A C } = \frac { c _ { 1 } } { b } and sinC2sinB2=c2b\frac { \sin C _ { 2 } } { \sin B _ { 2 } } = \frac { c _ { 2 } } { b }

\therefore sinC1sinB1+sinC2sinB2=c1+c2b\frac { \sin C _ { 1 } } { \sin B _ { 1 } } + \frac { \sin C _ { 2 } } { \sin B _ { 2 } } = \frac { c _ { 1 } + c _ { 2 } } { b }

[cosA=b2+c2a22bc or c2(2bcosA)c+(b2a2)=0c1+c2=2bcosA]\left[ \begin{array} { l } \because \cos A = \frac { b ^ { 2 } + c ^ { 2 } - a ^ { 2 } } { 2 b c } \text { or } c ^ { 2 } - ( 2 b \cos A ) c + \left( b ^ { 2 } - a ^ { 2 } \right) = 0 \\ \therefore c _ { 1 } + c _ { 2 } = 2 b \cos A \end{array} \right]

sinC1sinB1+sinC2sinB2\frac { \sin C _ { 1 } } { \sin B _ { 1 } } + \frac { \sin C _ { 2 } } { \sin B _ { 2 } }=2bcosAb=2cosA\frac { 2 b \cos A } { b } = 2 \cos A.