Solveeit Logo

Question

Physics Question on Current electricity

In an aluminum (Al)(Al) bar of square cross section, a square hole is drilled and is filled with iron (Fe)(Fe) as shown in the figure. The electrical resistivities of AlAl and Fe are 2.7?108Ωm2.7 ? 10^{-8 }\, \Omega m and 1.0?107Ωm1.0 ? 10^{-7}\, \Omega m, respectively. The electrical resistance between the two faces PP and QQ of the composite bar is

A

247564μΩ\frac{2475}{64}\mu\Omega

B

187564μΩ\frac{1875}{64}\mu\Omega

C

187549μΩ\frac{1875}{49}\mu\Omega

D

2475132μΩ\frac{2475}{132}\mu\Omega

Answer

187564μΩ\frac{1875}{64}\mu\Omega

Explanation

Solution

For Aluminium
RAl=ρA1AAl=2.7×108×50×103(494)×106R_{Al} = \frac{\rho A_{1}\ell}{A_{Al}} = \frac{2.7\times10^{-8}\times50\times10^{-3}}{\left(49-4\right)\times10^{-6}}
RAl=30?106OR_{Al }= 30 ? 10^{-6} O
For iron Fe
RFe=ρFeAFeR_{Fe} = \frac{\rho_{Fe}\ell}{A_{Fe}}
RFe=107×50×1034×106R_{Fe} = \frac{10^{-7}\times50\times10^{-3}}{4\times10^{-6}}
RFe=1250?106OR_{Fe} =1250 ?10^{-6} O
Re=RAlRFeRAl+RFeR_{e} =\frac{R_{Al}R_{Fe}}{R_{Al}+R_{Fe}}
Re=30×106×1250×106(30+1250)×106R_{e} =\frac{30\times10^{-6}\times1250\times10^{-6}}{\left(30+1250\right)\times10^{-6}}
Re=30×12501280×106R_{e} = \frac{30\times1250}{1280}\times10^{-6}
Re=187585μΩR_{e} = \frac{1875}{85}\mu\Omega