Solveeit Logo

Question

Physics Question on Thermodynamics

In an adrabatic process wherein pressure is increased by 23%\frac{2}{3} \%. If CpCV=32\frac{C_{p}}{C_{V}}=\frac{3}{2}, then the volume decreases by about

A

49%\frac{4}{9} \%

B

23%\frac{2}{3}\%

C

4%4\%

D

94%\frac{9}{4}\%

Answer

49%\frac{4}{9} \%

Explanation

Solution

For an adiabatic process,
pVγ=p V^{\gamma}= constant (( say C)C)
Here, γ=CpCV=32\gamma=\frac{C_{p}}{C_{V}}=\frac{3}{2}
pV3/2=C\therefore p V^{3 / 2}=C
logp+32logV=logC\Rightarrow \log p+\frac{3}{2} \log V=\log C
Δπp+32ΔVV=0\Rightarrow \frac{\Delta \pi}{p}+\frac{3}{2} \frac{\Delta V}{V}=0
ΔVV=23Δπp\therefore \frac{\Delta V}{V}=\frac{-2}{3} \frac{\Delta \pi}{p}
ΔVV×100=(23)(Δπp×100)\frac{\Delta V}{V} \times 100=-\left(\frac{2}{3}\right)\left(\frac{\Delta \pi}{p} \times 100\right)
=23×23%=49%=-\frac{2}{3} \times \frac{2}{3} \%=-\frac{4}{9} \%
Thus, volume decreases by 49%\frac{4}{9} \%.