Solveeit Logo

Question

Question: In an adiabatic process, the pressure is increased by \(\dfrac{2}{3}\) %. If \(\gamma = \dfrac{3}{2}...

In an adiabatic process, the pressure is increased by 23\dfrac{2}{3} %. If γ=32\gamma = \dfrac{3}{2}, then nearly by what percentage the volume decreases?
A.{\text{A}}{\text{.}} 49\dfrac{4}{9} %
B.{\text{B}}{\text{.}} 23\dfrac{2}{3} %
C.{\text{C}}{\text{.}} 1 %
D.{\text{D}}{\text{.}} 94\dfrac{9}{4} %

Explanation

Solution

Hint: Here, we will proceed by taking the natural logarithm of the general equation for any adiabatic process. Through this, we will represent the percentage change in pressure with the percentage change in volume.

Formulas Used- PVγ{\text{P}}{{\text{V}}^\gamma } = c, ln(ab)=lna+lnb\ln \left( {ab} \right) = \ln a + \ln b, ln(ab)=blna\ln \left( {{a^b}} \right) = b\ln a and lnx+alny=bΔxx+aΔyy=0\ln x + a\ln y = b \Rightarrow \dfrac{{\Delta x}}{x} + a\dfrac{{\Delta y}}{y} = 0.

Step By Step Answer:
Given, Percentage increase in the pressure = 23\dfrac{2}{3} %

Adiabatic index γ=32\gamma = \dfrac{3}{2}

As we know that in any adiabatic process, PVγ{\text{P}}{{\text{V}}^\gamma } = c (1) \to (1) where P is the pressure in the adiabatic process, V is the volume in the adiabatic process, γ\gamma is the adiabatic index and c is any constant

By taking natural logarithm on both sides of equation (1), we get

ln(PVγ)=ln(c) \Rightarrow \ln \left( {{\text{P}}{{\text{V}}^\gamma }} \right) = \ln \left( {\text{c}} \right)
Using the formula ln(ab)=lna+lnb\ln \left( {ab} \right) = \ln a + \ln b in the above equation, we get
ln(P)+ln(Vγ)=ln(c)\Rightarrow \ln \left( {\text{P}} \right) + \ln \left( {{{\text{V}}^\gamma }} \right) = \ln \left( {\text{c}} \right)

By using the formula ln(ab)=blna\ln \left( {{a^b}} \right) = b\ln a in the above equation, we get
ln(P)+γln(V)=ln(c)\Rightarrow \ln \left( {\text{P}} \right) + \gamma \ln \left( {\text{V}} \right) = \ln \left( {\text{c}} \right)

By putting γ=32\gamma = \dfrac{3}{2} in the above equation, we get

ln(P)+32ln(V)=ln(c) (2) \Rightarrow \ln \left( {\text{P}} \right) + \dfrac{3}{2}\ln \left( {\text{V}} \right) = \ln \left( {\text{c}} \right){\text{ }} \to {\text{(2)}}

Also we know that any equation in x and y variables given by lnx+alny=b\ln x + a\ln y = b where a and b are constants can be written as

Δxx+aΔyy=0 \Rightarrow \dfrac{{\Delta x}}{x} + a\dfrac{{\Delta y}}{y} = 0

Using the above concept, equation (1) can be written in terms of change in pressure and change in volume (these two are variables) can be written as

ΔPP+32ΔVV=0 (2) \Rightarrow \dfrac{{\Delta {\text{P}}}}{{\text{P}}} + \dfrac{3}{2}\dfrac{{\Delta {\text{V}}}}{{\text{V}}} = 0{\text{ }} \to {\text{(2)}}

As, Percentage increase in pressure = Final PressureInitial PressureInitial Pressure×100=ΔPP×100\dfrac{{{\text{Final Pressure}} - {\text{Initial Pressure}}}}{{{\text{Initial Pressure}}}} \times 100 = \dfrac{{\Delta {\text{P}}}}{{\text{P}}} \times 100 % where ΔP\Delta {\text{P}} denotes the change in pressure

23=ΔPP×100 ΔPP=23×100 ΔPP=2300  \Rightarrow \dfrac{2}{3} = \dfrac{{\Delta {\text{P}}}}{{\text{P}}} \times 100 \\\ \Rightarrow \dfrac{{\Delta {\text{P}}}}{{\text{P}}} = \dfrac{2}{{3 \times 100}} \\\ \Rightarrow \dfrac{{\Delta {\text{P}}}}{{\text{P}}} = \dfrac{2}{{300}} \\\

By substituting ΔPP=2300\dfrac{{\Delta {\text{P}}}}{{\text{P}}} = \dfrac{2}{{300}} in equation (2), we get

2300+32ΔVV=0 32ΔVV=2300 ΔVV=2×2300×3 ΔVV=4900  \Rightarrow \dfrac{2}{{300}} + \dfrac{3}{2}\dfrac{{\Delta {\text{V}}}}{{\text{V}}} = 0 \\\ \Rightarrow \dfrac{3}{2}\dfrac{{\Delta {\text{V}}}}{{\text{V}}} = - \dfrac{2}{{300}} \\\ \Rightarrow \dfrac{{\Delta {\text{V}}}}{{\text{V}}} = - \dfrac{{2 \times 2}}{{300 \times 3}} \\\ \Rightarrow \dfrac{{\Delta {\text{V}}}}{{\text{V}}} = - \dfrac{4}{{900}} \\\

Also, Percentage change in volume = Final VolumeInitial VolumeInitial Volume×100=ΔVV×100\dfrac{{{\text{Final Volume}} - {\text{Initial Volume}}}}{{{\text{Initial Volume}}}} \times 100 = \dfrac{{\Delta {\text{V}}}}{{\text{V}}} \times 100 % where ΔV\Delta {\text{V}} denotes the change in volume

Percentage change in volume = 4900×100=49 - \dfrac{4}{{900}} \times 100 = - \dfrac{4}{9} %

The negative sign of the percentage change in volume means that the volume is decreased.
Therefore, the percentage decrease in volume is 49\dfrac{4}{9} %

Hence, option A is correct.

Note- In this particular problem, P and V are considered as two state variables which are basically varied as the state is changed. Also, the percentage change in any quantity is defined as the ratio of the change in the value of that quantity to the original value of that quantity multiplied by 100. This percentage change can be percentage increase or percentage decrease.