Solveeit Logo

Question

Question: In an A.P., the first term is \(2\) and the sum of the first five terms is one-fourth of the next fi...

In an A.P., the first term is 22 and the sum of the first five terms is one-fourth of the next five terms. Show that 20th{20^{th}} term is 112 - 112.

Explanation

Solution

Assume common difference to be d and use the formula for nth{{\text{n}}^{{\text{th}}}} term
Tn=(a + (n - 1)d)\Rightarrow {{\text{T}}_n} = \left( {{\text{a + }}\left( {{\text{n - 1}}} \right){\text{d}}} \right) where a is the first term, d is the common difference to find the first ten terms and solve the obtained equation for d. Then use the same formulaTn=(a + (n - 1)d){{\text{T}}_n} = \left( {{\text{a + }}\left( {{\text{n - 1}}} \right){\text{d}}} \right) to find 20th{20^{th}} term.

Complete step-by-step answer:
Given, in an A.P. series the first term a=22
Also the sum of first five terms is one-fourth of the next five terms.
We have to show that 20th{20^{th}} term is112 - 112.
Now we have to find the first ten terms.
We know that in A.P. the nth{{\text{n}}^{{\text{th}}}} term is written as,
Tn=(a + (n - 1)d)\Rightarrow {{\text{T}}_n} = \left( {{\text{a + }}\left( {{\text{n - 1}}} \right){\text{d}}} \right) where a is the first term, d is the common difference.
So we can write the first term as-
T1=(a + (1 - 1)d)\Rightarrow {{\text{T}}_1} = \left( {{\text{a + }}\left( {{\text{1 - 1}}} \right){\text{d}}} \right)
On solving we get,
T1=a\Rightarrow {{\text{T}}_1} = {\text{a}}
Then, second term can be written as-
T2=(a + (2 - 1)d)\Rightarrow {{\text{T}}_2} = \left( {{\text{a + }}\left( {{\text{2 - 1}}} \right){\text{d}}} \right)
On solving we get,
T2=(a + d)\Rightarrow {{\text{T}}_2} = \left( {{\text{a + d}}} \right)
Now we can write third term as-
T3=(a + (3 - 1)d)\Rightarrow {{\text{T}}_3} = \left( {{\text{a + }}\left( {{\text{3 - 1}}} \right){\text{d}}} \right)
On solving we get,
T3=(a + 2d)\Rightarrow {{\text{T}}_3} = \left( {{\text{a + 2d}}} \right)
So following this pattern we can write the other terms as-
T4=(a + 3d)\Rightarrow {{\text{T}}_4} = \left( {{\text{a + 3d}}} \right)
T5=(a + 4d)\Rightarrow {{\text{T}}_5} = \left( {{\text{a + 4d}}} \right)
T6=(a + 5d)\Rightarrow {{\text{T}}_6} = \left( {{\text{a + 5d}}} \right)
T7=(a + 6d)\Rightarrow {{\text{T}}_7} = \left( {{\text{a + 6d}}} \right)
T8=(a + 7d)\Rightarrow {{\text{T}}_8} = \left( {{\text{a + 7d}}} \right)
T9=(a + 8d)\Rightarrow {{\text{T}}_9} = \left( {{\text{a + 8d}}} \right)
And T10=(a + 9d) \Rightarrow {{\text{T}}_{10}} = \left( {{\text{a + 9d}}} \right)
On adding the first five terms we get,
T1 + T2 + T3+T4+T5=a + (a + d)+(a + 2d)+(a + 3d)+(a + 4d)\Rightarrow {{\text{T}}_1}{\text{ + }}{{\text{T}}_2}{\text{ + }}{{\text{T}}_3} + {{\text{T}}_4} + {{\text{T}}_5} = {\text{a + }}\left( {{\text{a + d}}} \right) + \left( {{\text{a + 2d}}} \right) + \left( {{\text{a + 3d}}} \right) + \left( {{\text{a + 4d}}} \right)
On taking same terms together we get,
T1 + T2 + T3+T4+T5=a + a + a + a + a + d + 2d + 3d + 4d\Rightarrow {{\text{T}}_1}{\text{ + }}{{\text{T}}_2}{\text{ + }}{{\text{T}}_3} + {{\text{T}}_4} + {{\text{T}}_5} = {\text{a + a + a + a + a + d + 2d + 3d + 4d}}
On solving we get,
T1 + T2 + T3+T4+T5=5a + 10d\Rightarrow {{\text{T}}_1}{\text{ + }}{{\text{T}}_2}{\text{ + }}{{\text{T}}_3} + {{\text{T}}_4} + {{\text{T}}_5} = 5{\text{a + 10d}} --- (i)
Now on adding the next five terms, we get-
T6 + T7 + T8+T9+T10=(a + 5d)+(a + 6d)+(a + 7d)+(a + 8d)+(a + 9d)\Rightarrow {{\text{T}}_6}{\text{ + }}{{\text{T}}_7}{\text{ + }}{{\text{T}}_8} + {{\text{T}}_9} + {{\text{T}}_{10}} = \left( {{\text{a + 5d}}} \right) + \left( {{\text{a + 6d}}} \right) + \left( {{\text{a + 7d}}} \right) + \left( {{\text{a + 8d}}} \right) + \left( {{\text{a + 9d}}} \right)
On solving we get,
T6 + T7 + T8+T9+T10=5a + 35d\Rightarrow {{\text{T}}_6}{\text{ + }}{{\text{T}}_7}{\text{ + }}{{\text{T}}_8} + {{\text{T}}_9} + {{\text{T}}_{10}} = {\text{5a + 35d}} --- (ii)
Now according to question-
T1 + T2 + T3+T4+T5=\Rightarrow {{\text{T}}_1}{\text{ + }}{{\text{T}}_2}{\text{ + }}{{\text{T}}_3} + {{\text{T}}_4} + {{\text{T}}_5} = 14[T6 + T7 + T8+T9+T10]\dfrac{1}{4}\left[ {{{\text{T}}_6}{\text{ + }}{{\text{T}}_7}{\text{ + }}{{\text{T}}_8} + {{\text{T}}_9} + {{\text{T}}_{10}}} \right]
On substituting the values of (i) and (ii) we get,
5a + 10d=14[5a + 35d]\Rightarrow 5{\text{a + 10d}} = \dfrac{1}{4}\left[ {{\text{5a + 35d}}} \right]
On solving, we get,
20a + 40d=5a + 35d\Rightarrow 20{\text{a + 40d}} = {\text{5a + 35d}}
On taking same terms one side, we get-
20a - 5a + 40d - 35d = 0\Rightarrow 20{\text{a - 5a + 40d - 35d = 0}}
On solving the above equation, we get-
15a + 5d = 0\Rightarrow 1{\text{5a + 5d = 0}}
We can write it as-
5d = - 15a\Rightarrow {\text{5d = - }}1{\text{5a}}
Then we get,
d = - 3a\Rightarrow {\text{d = - 3a}}
We know that a=22. Then we get,
d = - 6\Rightarrow {\text{d = - 6}}
Now using the value of a and d to find the 20th{20^{th}} term using the formula-
Tn=(a + (n - 1)d)\Rightarrow {{\text{T}}_n} = \left( {{\text{a + }}\left( {{\text{n - 1}}} \right){\text{d}}} \right) where a is the first term, d is the common difference
We get-
T20=(2 + (20 - 1)(6))\Rightarrow {{\text{T}}_{20}} = \left( {{\text{2 + }}\left( {{\text{20 - 1}}} \right)\left( { - 6} \right)} \right)
On solving we get,
T20=2 - (19×6)\Rightarrow {{\text{T}}_{20}} = {\text{2 - }}\left( {19 \times 6} \right)
T20=2 - 114 = - 112\Rightarrow {{\text{T}}_{20}} = {\text{2 - 114 = - 112}}
Hence Proved

Note: We can also solve this question by using the formula of the sum n terms for A.P. series which is given by-
Sn=n2[2a+(n1)d]\Rightarrow {{\text{S}}_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right] where variables have usual notations.
So according to question we can write-
S5 = 14(S10 - S5)\Rightarrow {{\text{S}}_5}{\text{ = }}\dfrac{1}{4}\left( {{{\text{S}}_{10}}{\text{ - }}{{\text{S}}_5}} \right) because we can write the sum of next five terms as-S5 = (S10 - S5){{\text{S}}_5}{\text{ = }}\left( {{{\text{S}}_{10}}{\text{ - }}{{\text{S}}_5}} \right)
Then putting a=22 we will get,
\Rightarrow \dfrac{5}{2}\left[ {2 \times 2 + \left( {5 - 1} \right)d} \right] = \dfrac{1}{4}\left[ {\left\\{ {\dfrac{{10}}{2}\left( {2 \times 2 + \left( {10 - 1} \right)d} \right)} \right\\} - \dfrac{5}{2}\left\\{ {2 \times 2 + \left( {5 - 1} \right)d} \right\\}} \right]
On solving we get,
80+80d=20+7d\Rightarrow 80 + 80d = 20 + 7d
On solving this equation we get,
10d=60 d=6  \Rightarrow 10d = - 60 \\\ \Rightarrow d = - 6 \\\
Then use the formula of nth{{\text{n}}^{{\text{th}}}} term,
Tn=(a + (n - 1)d)\Rightarrow {{\text{T}}_n} = \left( {{\text{a + }}\left( {{\text{n - 1}}} \right){\text{d}}} \right) where a is the first term, d is the common difference to find the 20th{20^{th}} term.
On putting values we get,
T20=(2 + (20 - 1)(6))\Rightarrow {{\text{T}}_{20}} = \left( {{\text{2 + }}\left( {{\text{20 - 1}}} \right)\left( { - 6} \right)} \right)
On solving we get,
T20=2 - (19×6)\Rightarrow {{\text{T}}_{20}} = {\text{2 - }}\left( {19 \times 6} \right)
T20=2 - 114 = - 112\Rightarrow {{\text{T}}_{20}} = {\text{2 - 114 = - 112}}