Solveeit Logo

Question

Question: In an A.P., if \[{S_6} + {S_7} = 167\] and \[{S_{10}} = 235\], then find the A.P....

In an A.P., if S6+S7=167{S_6} + {S_7} = 167 and S10=235{S_{10}} = 235, then find the A.P.

Explanation

Solution

Here, we will find the A.P by using the formula for sum of nn terms of an A.P.. For this we will create two equations using the given information. Then, we will solve the equations to get the first term and common difference of the A.P. Using the first term and common difference, we will find the first few terms of the A.P.
Formula Used: The sum of nn terms of an A.P. is given by the formula Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right], where aa is the first term of the A.P. and dd is the common difference.

Complete step by step solution:
First, we will use the formula for the sum of terms of an A.P. to get the sum of the first 6 and the sum of the first 7 terms.
The sum of nn terms of an A.P. is given by the formula Sn=n2[2a+(n1)d]{S_n} = \dfrac{n}{2}\left[ {2a + \left( {n - 1} \right)d} \right], where aa is the first term of the A.P. and dd is the common difference.
Substituting n=6n = 6 in the formula for sum of nn terms of an A.P., we get
S6=62[2a+(61)d]{S_6} = \dfrac{6}{2}\left[ {2a + \left( {6 - 1} \right)d} \right]
Simplifying the expression, we get
S6=3(2a+5d) S6=6a+15d\begin{array}{l} \Rightarrow {S_6} = 3\left( {2a + 5d} \right)\\\ \Rightarrow {S_6} = 6a + 15d\end{array}
Substituting n=7n = 7 in the formula for sum of nn terms of an A.P., we get
S7=72[2a+(71)d]{S_7} = \dfrac{7}{2}\left[ {2a + \left( {7 - 1} \right)d} \right]
Simplifying the expression, we get
S7=72(2a+6d) S7=7(a+3d) S7=7a+21d\begin{array}{l} \Rightarrow {S_7} = \dfrac{7}{2}\left( {2a + 6d} \right)\\\ \Rightarrow {S_7} = 7\left( {a + 3d} \right)\\\ \Rightarrow {S_7} = 7a + 21d\end{array}
Now, it is given that S6+S7=167{S_6} + {S_7} = 167.
We will substitute the values of the sums to get equation (1)\left( 1 \right).
Substituting S6=6a+15d{S_6} = 6a + 15d and S7=7a+21d{S_7} = 7a + 21d in the expression, we get
6a+15d+7a+21d=167\Rightarrow 6a + 15d + 7a + 21d = 167
Adding the like terms, we get
13a+36d=167(1)\Rightarrow 13a + 36d = 167 \ldots \ldots \ldots \left( 1 \right)
Now, we will find the sum of the first 10 terms of the A.P.
Substituting n=10n = 10 in the formula for sum of nn terms of an A.P., we get
S10=102[2a+(101)d]{S_{10}} = \dfrac{{10}}{2}\left[ {2a + \left( {10 - 1} \right)d} \right]
Simplifying the expression, we get
S10=5(2a+9d)\Rightarrow {S_{10}} = 5\left( {2a + 9d} \right)
It is given that S10=235{S_{10}} = 235.
Substituting S10=5(2a+9d){S_{10}} = 5\left( {2a + 9d} \right) in the expression, we get
5(2a+9d)=235\Rightarrow 5\left( {2a + 9d} \right) = 235
Dividing both sides of the equation by 5, we get
2a+9d=47(2)\Rightarrow 2a + 9d = 47 \ldots \ldots \ldots \left( 2 \right)
Now, we can observe that equations (1)\left( 1 \right) and (2)\left( 2 \right) are a pair of linear equations in two variables.
We will solve these two equations by elimination method to get the values of aa and dd.
Multiplying both sides of equation (1)\left( 1 \right) by 14\dfrac{1}{4}, we get
(13a+36d)14=167×14 13a4+9d=1674(3)\begin{array}{l} \Rightarrow \left( {13a + 36d} \right)\dfrac{1}{4} = 167 \times \dfrac{1}{4}\\\ \Rightarrow \dfrac{{13a}}{4} + 9d = \dfrac{{167}}{4} \ldots \ldots \ldots \left( 3 \right)\end{array}
Subtracting equation (2)\left( 2 \right) from equation (3)\left( 3 \right), we get

13a4 +9d= 1674 2a +9d= 4713a42a =167447\begin{array}{l}\dfrac{{13a}}{4}{\text{ }} + 9d = {\text{ }}\dfrac{{167}}{4}\\\\\underline {{\text{ }}2a{\text{ }} + 9d = {\text{ }}47} \\\\\dfrac{{13a}}{4} - 2a{\text{ }} = \dfrac{{167}}{4} - 47\end{array}
Taking the L.C.M. on both sides, we get
13a8a4=1671884\Rightarrow \dfrac{{13a - 8a}}{4} = \dfrac{{167 - 188}}{4}
Simplifying the expressions, we get
5a=21\Rightarrow 5a = - 21
Dividing both sides by 5, we get
a=215\therefore a=-\dfrac{{21}}{{5}}
Therefore, the first term of the A.P. is 215 - \dfrac{{21}}{5}.
Substituting a=215a = - \dfrac{{21}}{5} in equation (2)\left( 2 \right), we get
2(215)+9d=47 425+9d=47\begin{array}{l} \Rightarrow 2\left( { - \dfrac{{21}}{5}} \right) + 9d = 47\\\ \Rightarrow - \dfrac{{42}}{5} + 9d = 47\end{array}
Adding 425\dfrac{{42}}{5} on both sides, we get
425+9d+425=47+425 9d=47+425\begin{array}{l} \Rightarrow - \dfrac{{42}}{5} + 9d + \dfrac{{42}}{5} = 47 + \dfrac{{42}}{5}\\\ \Rightarrow 9d = 47 + \dfrac{{42}}{5}\end{array}
Taking the L.C.M. and adding the terms, we get
9d=235+425 9d=2775\begin{array}{l} \Rightarrow 9d = \dfrac{{235 + 42}}{5}\\\ \Rightarrow 9d = \dfrac{{277}}{5}\end{array}
Dividing both sides by 9, we get
d=27745\therefore d=\dfrac{{277}}{{45}}
Therefore, the common difference of the A.P. is 27745\dfrac{{277}}{{45}}.
Now, we have the first term and the common difference of the A.P.
We know that each term of the A.P. is the sum of the previous term and the common difference.
Thus, we get
Second term of the A.P. =215+27745=189+27745=8845 = - \dfrac{{21}}{5} + \dfrac{{277}}{{45}} = \dfrac{{ - 189 + 277}}{{45}} = \dfrac{{88}}{{45}}
Similarly, we get
Third term of the A.P. =8845+27745=36545=739 = \dfrac{{88}}{{45}} + \dfrac{{277}}{{45}} = \dfrac{{365}}{{45}} = \dfrac{{73}}{9}

Therefore, we get the A.P. as 215,8845,739,- \dfrac{{21}}{5},\dfrac{{88}}{{45}},\dfrac{{73}}{9}, \ldots \ldots.

Note:
Note: We can also use a substitution method to simplify the two linear equations in two variables.
Rewriting equation (2)\left( 2 \right), we get
2a=479d a=479d2\begin{array}{l} \Rightarrow 2a = 47 - 9d\\\ \Rightarrow a = \dfrac{{47 - 9d}}{2}\end{array}
Substituting a=479d2a = \dfrac{{47 - 9d}}{2} in equation (1)\left( 1 \right), we get
13(479d2)+36d=167\Rightarrow 13\left( {\dfrac{{47 - 9d}}{2}} \right) + 36d = 167
Simplifying the expression, we get
611117d2+36d=167 611117d+72d2=167 61145d=334\begin{array}{l} \Rightarrow \dfrac{{611 - 117d}}{2} + 36d = 167\\\ \Rightarrow \dfrac{{611 - 117d + 72d}}{2} = 167\\\ \Rightarrow 611 - 45d = 334\end{array}
Rewriting the equation, we get
45d=611334 45d=277\begin{array}{l} \Rightarrow 45d = 611 - 334\\\ \Rightarrow 45d = 277\end{array}
Dividing both sides by 45, we get
d=27745\therefore d=\dfrac{{277}}{{45}}
Now, substituting d=27745d = \dfrac{{277}}{{45}} in the equation a=479d2a = \dfrac{{47 - 9d}}{2}, we get
a=479(27745)2 a=4727752 a=23527752 a=4210 a=215\begin{array}{l} \Rightarrow a = \dfrac{{47 - 9\left( {\dfrac{{277}}{{45}}} \right)}}{2}\\\ \Rightarrow a = \dfrac{{47 - \dfrac{{277}}{5}}}{2}\\\ \Rightarrow a = \dfrac{{\dfrac{{235 - 277}}{5}}}{2}\\\ \Rightarrow a = \dfrac{{ - 42}}{{10}}\\\ \Rightarrow a = \dfrac{{ - 21}}{5}\end{array}
Thus, we get the first term and the common difference of the A.P. using substitution method to solve the linear equations in two variables.