Solveeit Logo

Question

Mathematics Question on Sequence and series

In an A.PA.P., if mthm^{th} term is nn and the nthn^{th} term is mm, where mnm \ne n, then find its pthp^{th} term.

A

nm+p n - m + p

B

n+m+pn + m + p

C

n+mpn + m -p

D

nmp n - m - p

Answer

n+mpn + m -p

Explanation

Solution

We have, am=a+(m1)d=n....(i)a_{m} = a + \left(m - 1\right)d = n\quad....\left(i\right) and an=a+(n1)d=m....(ii)a_{n} = a + \left(n - 1\right)d = m \quad....\left(ii\right) Solving (i)\left(i\right) and (ii)\left(ii\right), we get (mn)d=nm\left(m - n\right)d = n-m d=1 \Rightarrow d = -1 and so, a=n+m1a = n + m - 1 Now, ap=a+(p1)da_{p }= a + \left(p-1\right)d =n+m1+(p1)(1)= n + m- 1 + \left(p- 1\right)\left(-1\right) =n+mp= n + m -p