Solveeit Logo

Question

Physics Question on KCL/ KVL in AC Circuits

In an a.c. circuit, voltage and current are given by:V=100sin(100t)VV = 100 \sin (100 \, t) \, \text{V}andI=100sin(100t+π3)mAI = 100 \sin \left(100 \, t + \frac{\pi}{3}\right) \, \text{mA}respectively. The average power dissipated in one cycle is:

A

5 W

B

10 W

C

2.5 W

D

25 W

Answer

2.5 W

Explanation

Solution

The formula for the average power dissipated in an AC circuit with sinusoidal voltage and current is:
Pavg=VrmsIrmscosϕP_{\text{avg}} = V_{\text{rms}} \cdot I_{\text{rms}} \cdot \cos \phi where ϕ\phi is the phase difference between the voltage and the current.

Step 1. Convert voltage and current to RMS values:
- Given V=100sin(100t)V = 100\sin(100t), the peak voltage V0=100VV_0 = 100 \, \text{V}.

$V_{\text{rms}} = \frac{V_0}{\sqrt{2}} = \frac{100}{\sqrt{2}} = 50\sqrt{2} \, \text{V}$  
  

- Given I=100sin(100t+π3)I = 100\sin(100t + \frac{\pi}{3}), the peak current I0=100mA=0.1AI_0 = 100 \, \text{mA} = 0.1 \, \text{A}.

$I_{\text{rms}} = \frac{I_0}{\sqrt{2}} = \frac{0.1}{\sqrt{2}} = 0.05\sqrt{2} \, \text{A}$  

Step 2. Determine the phase difference:
- The phase difference ϕ=π3\phi = \frac{\pi}{3}.

Step 3. Calculate the average power:

Pavg=VrmsIrmscosϕP_{\text{avg}} = V_{\text{rms}} \cdot I_{\text{rms}} \cdot \cos \phi

Substituting the values:

Pavg=(502)(0.052)cosπ3P_{\text{avg}} = (50\sqrt{2}) \cdot (0.05\sqrt{2}) \cdot \cos \frac{\pi}{3}

Pavg=500.05cosπ3P_{\text{avg}} = 50 \cdot 0.05 \cdot \cos \frac{\pi}{3}

Pavg=2.5WP_{\text{avg}} = 2.5 \, \text{W}
The Correct Answer is: 2.5 W