Solveeit Logo

Question

Question: In adjacent circuit the instantaneous current equation is– ![](https://cdn.pureessence.tech/canvas_...

In adjacent circuit the instantaneous current equation is–

A

2 sin (100tπ4)\left( 100t - \frac{\pi}{4} \right)

B

2\sqrt{2}sin (100tπ4)\left( 100t - \frac{\pi}{4} \right)

C

2\sqrt{2}sin(200tπ4)\left( 200t - \frac{\pi}{4} \right)

D

2\sqrt { 2 } (100t+π4)\left( 100t + \frac{\pi}{4} \right)

Answer

2\sqrt{2}sin (100tπ4)\left( 100t - \frac{\pi}{4} \right)

Explanation

Solution

Let f is the phase difference between V and i

tan f = XLR\frac{X_{L}}{R}= ωLR\frac{\omega L}{R} = 100×1100\frac{100 \times 1}{100} = π4\frac{\pi}{4}

From diagram it is clear that i lags with V

\ Instantaneous current equation will be

i0 = sin (100 t –f) where f = π4\frac{\pi}{4} and i0 = V0Z\frac{V_{0}}{Z}

= V0R2+(ωL)2\frac{V_{0}}{\sqrt{R^{2} + (\omega L)^{2}}} = 200(100)2+(100×1)2\frac{200}{\sqrt{(100)^{2} + (100 \times 1)^{2}}} = 2\sqrt{2}

\ i = 2\sqrt{2} sin (100 t – π4\frac{\pi}{4})