Solveeit Logo

Question

Question: In accordance with the Bohr’s model, the quantum number that characterises the earth’s revolution ar...

In accordance with the Bohr’s model, the quantum number that characterises the earth’s revolution around the sun in an orbit of radius 1.5×1011 m1.5 \times 10^{11}\text{ m} with orbital speed3×104 m s1 is(Take mass of earth = 6×1024 kg)3 \times 10^{4}\text{ m }\text{s}^{- 1}\text{ is}(\text{Take mass of earth } = \text{ 6} \times 10^{24}\text{ kg})

A

5.98×10865.98 \times 10^{86}

B

2.57×10382.57 \times 10^{38}

C

8.57×10648.57 \times 10^{64}

D

2.57×10742.57 \times 10^{74}

Answer

2.57×10742.57 \times 10^{74}

Explanation

Solution

Here r=1.5×1011mr = 1.5 \times 10^{11}m

v=3×104ms1v = 3 \times 10^{4}ms^{- 1}

m=6.0×1024kgm = 6.0 \times 10^{24}kg

According to Bohr’s model

mvr=nh2πmvr = \frac{nh}{2\pi}

n=2πmvrh\Rightarrow n = \frac{2\pi mvr}{h}

=2×227×6×1024×3×104×1.5×10116.6×1034= \frac{2 \times 22}{7} \times \frac{6 \times 10^{24} \times 3 \times 10^{4} \times 1.5 \times 10^{11}}{6.6 \times 10^{- 34}}

=2.57×1074= 2.57 \times 10^{74}