Solveeit Logo

Question

Question: In a∆ABC, a, c, A are given and b<sub>1</sub>, b<sub>2</sub> are two values of the third side b such...

In a∆ABC, a, c, A are given and b1, b2 are two values of the third side b such that b2 = 2b1. Then sinA is equal to

A

9a2c28a2\sqrt { \frac { 9 a ^ { 2 } - c ^ { 2 } } { 8 a ^ { 2 } } }

B

9a2c28c2\sqrt { \frac { 9 a ^ { 2 } - c ^ { 2 } } { 8 c ^ { 2 } } }

C

9a2c28a2\sqrt { \frac { 9 a ^ { 2 } - c ^ { 2 } } { 8 a ^ { 2 } } }

D

None of these

Answer

9a2c28c2\sqrt { \frac { 9 a ^ { 2 } - c ^ { 2 } } { 8 c ^ { 2 } } }

Explanation

Solution

We have cos A =

⇒ b2 – 2bc cos A + (c2 – a2) = 0.

it is given that b1 and b2 are roots of this equation.

Therefore b1 + b2 = 2ccosA and b1b2 = c2 – a2 ⇒ 3b1

= 2c cos A and 2b12 = c2 – a2 (since b2 = 2b1 given)

⇒ 2 (2c3cosA)2=c2a2\left( \frac { 2 c } { 3 } \cos A \right) ^ { 2 } = c ^ { 2 } - a ^ { 2 }

⇒ 8c2(1 – sin2A) = 9c2 – 9a2 ⇒ sin A =9a2c28c2\sqrt { \frac { 9 a ^ { 2 } - c ^ { 2 } } { 8 c ^ { 2 } } }