Solveeit Logo

Question

Physics Question on Dual nature of matter

In a Young’s double-slit experiment using monochromatic light of wavelength λ, the intensity of light In a Young’s double-slit experiment, using mono chromatic light of wave length λ, the intensity of light at a point on the screen is I0, where the path difference between the interfering waves is λ. The path difference between the interfering waves at a point where the intensity is Io2\frac{I_o}{2} , will be:at a point on the screen is I0​, where the path difference between the interfering waves is λ. The path difference at a point where the intensity is 2I0​​ will be:

A

λ4\frac{\lambda}{4}

B

λ2\frac{\lambda}{2}

C

λ

D

Answer

λ2\frac{\lambda}{2}

Explanation

Solution

Solution: The intensity I in a Young’s double-slit experiment is related to the path difference Δx between the waves by the formula:\textbf{Solution:} \text{ The intensity } I \text{ in a Young's double-slit experiment is related to the path difference } \Delta x \text{ between the waves by the formula:}

I=I0cos2(Δx2λ)I = I_0 \cos^2 \left( \frac{\Delta x}{2 \lambda} \right)

When the intensity is I02, we have:\text{When the intensity is } \frac{I_0}{2}, \text{ we have:}
I02=I0cos2(Δx2λ)\frac{I_0}{2} = I_0 \cos^2 \left( \frac{\Delta x}{2 \lambda} \right)

This simplifies to:\text{This simplifies to:}
cos2(Δx2λ)=12\cos^2 \left( \frac{\Delta x}{2 \lambda} \right) = \frac{1}{2}

Thus, Δx=λ2.\text{Thus, } \Delta x = \frac{\lambda}{2}.