Solveeit Logo

Question

Physics Question on Youngs double slit experiment

In a Young’s double slit experiment, the intensity at a point is (14)th\left(\frac{1}{4}\right)^{\text{th}} of the maximum intensity, the minimum distance of the point from the central maximum is ____ μ\mum.
(Given: λ=600nm,d=1.0mm,D=1.0m\lambda = 600 \, \text{nm}, \, d = 1.0 \, \text{mm}, \, D = 1.0 \, \text{m})

Answer

Step 1: Intensity relation The intensity at a point in the interference pattern is given by:

I=I0cos2(Δϕ2).I = I_0 \cos^2 \left( \frac{\Delta \phi}{2} \right).

Given:

I=I04.I = \frac{I_0}{4}.

Substitute:

I04=I0cos2(Δϕ2).\frac{I_0}{4} = I_0 \cos^2 \left( \frac{\Delta \phi}{2} \right).

Simplify:

cos2(Δϕ2)=14.\cos^2 \left( \frac{\Delta \phi}{2} \right) = \frac{1}{4}.

Taking square root:

cos(Δϕ2)=12.\cos \left( \frac{\Delta \phi}{2} \right) = \frac{1}{2}.

This implies:

Δϕ2=π3.\frac{\Delta \phi}{2} = \frac{\pi}{3}.

So:

Δϕ=2π3.\Delta \phi = \frac{2\pi}{3}.

Step 2: Path difference relation The phase difference Δϕ\Delta \phi is related to the path difference by:

Δϕ=2πλ×ydD.\Delta \phi = \frac{2\pi}{\lambda} \times \frac{y d}{D}.

Substitute Δϕ=2π3\Delta \phi = \frac{2\pi}{3}:

2π3=2πλ×ydD.\frac{2\pi}{3} = \frac{2\pi}{\lambda} \times \frac{y d}{D}.

Cancel 2π2\pi:

13=ydλD.\frac{1}{3} = \frac{y d}{\lambda D}.

Rearrange to solve for yy:

y=λD3d.y = \frac{\lambda D}{3 d}.

Step 3: Substitution of values Substitute λ=600nm=600×109m\lambda = 600 \, \text{nm} = 600 \times 10^{-9} \, \text{m}, D=1.0mD = 1.0 \, \text{m}, and d=1.0mm=1.0×103md = 1.0 \, \text{mm} = 1.0 \times 10^{-3} \, \text{m}:

y=600×109×1.031.0×103.y = \frac{600 \times 10^{-9} \times 1.0}{3 \cdot 1.0 \times 10^{-3}}.

Simplify:

y=600×1093×103=6003×106.y = \frac{600 \times 10^{-9}}{3 \times 10^{-3}} = \frac{600}{3} \times 10^{-6}.

y=200×106m.y = 200 \times 10^{-6} \, \text{m}.

Convert to μm\mu \text{m}:

y=200μm.y = 200 \, \mu \text{m}.

Final Answer: y=200μmy = 200 \, \mu \text{m}.