Solveeit Logo

Question

Question: In a Young's double slit experiment, \(I_0\) is the maximum intensity and \(\beta\) is the fringe wi...

In a Young's double slit experiment, I0I_0 is the maximum intensity and β\beta is the fringe width. Intensity at point P which is distance xx from central maxima is

A

I0cosπxβI_0 \cos \dfrac{\pi x}{\beta}

B

4I0cos2πxβ4I_0 \cos^2 \dfrac{\pi x}{\beta}

C

I0cos2πxβI_0 \cos^2 \dfrac{\pi x}{\beta}

D

I04cos2πxβ\dfrac{I_0}{4} \cos^2 \dfrac{\pi x}{\beta}

Answer

I0cos2πxβI_0 \cos^2 \dfrac{\pi x}{\beta}

Explanation

Solution

Key idea: Intensity II\propto (amplitude)2^2.

  1. Central fringe intensity:
    I0=k(2A)2.I_0 = k(2A)^2.

  2. At point P with phase difference ϕ\phi, resultant amplitude
    AP=2Acosϕ2.A_P = 2A\cos\frac{\phi}{2}.

  3. Hence intensity at P:
    I=k(2Acosϕ2)2=I0cos2ϕ2.I = k\bigl(2A\cos\frac{\phi}{2}\bigr)^2 = I_0\cos^2\frac{\phi}{2}.

  4. Phase difference ϕ=2πλΔx=2πxβ\phi = \frac{2\pi}{\lambda}\Delta x = \frac{2\pi x}{\beta}, so
    ϕ2=πxβ.\frac{\phi}{2} = \frac{\pi x}{\beta}.

  5. Therefore,
    I=I0cos2πxβ.I = I_0\cos^2\frac{\pi x}{\beta}.