Solveeit Logo

Question

Question: In a YDSE two thin transparent sheets are used in front of the slits $S_1$ and $S_2$ having refracti...

In a YDSE two thin transparent sheets are used in front of the slits S1S_1 and S2S_2 having refractive indices μ1=1.6\mu_1=1.6 and μ2=1.4\mu_2=1.4 respectively.

If both sheets have thickness 't', the central maximum is observed at a distance of 5 mm from centre O. Now the sheets are replaced by two sheets of same material of refractive index μ1+μ22\frac{\mu_1+\mu_2}{2} but having thickness t1t_1 and t2t_2 such that t=t1+t22t'=\frac{t_1+t_2}{2}. After replacement, now central maximum is observed at distance of 8 mm from centre O on the same side as before. Find the thickness t1t_1 (in μm\mu m).

[Given d = 1 mm, D = 1 m] (mark the answer in μm\mu m to nearest integer)

Answer

33

Explanation

Solution

The shift in the central maximum in a YDSE due to the insertion of thin transparent sheets of thicknesses t1t_1 and t2t_2 and refractive indices μ1\mu_1 and μ2\mu_2 in front of slits S1S_1 and S2S_2 respectively is given by

yc=Dd[(μ11)t1(μ21)t2]y_c = \frac{D}{d} [(\mu_1 - 1)t_1 - (\mu_2 - 1)t_2].

Here, ycy_c is the distance of the central maximum from the original center O. We assume the positive direction of yy is upwards. If S1S_1 is the upper slit and S2S_2 is the lower slit, a positive ycy_c means the central maximum shifts upwards.

In the first scenario, sheets of thickness tt and refractive indices μ1=1.6\mu_1 = 1.6 and μ2=1.4\mu_2 = 1.4 are placed in front of S1S_1 and S2S_2 respectively. The central maximum is observed at yc=5y_c = 5 mm from O.

5×103 m=1 m1×103 m[(1.61)t(1.41)t]5 \times 10^{-3} \text{ m} = \frac{1 \text{ m}}{1 \times 10^{-3} \text{ m}} [(1.6 - 1)t - (1.4 - 1)t]

5×103=103[0.6t0.4t]5 \times 10^{-3} = 10^3 [0.6t - 0.4t]

5×103=103(0.2t)5 \times 10^{-3} = 10^3 (0.2t)

5×103=200t5 \times 10^{-3} = 200t

t=5×103200=5×1032×102=2.5×105 m=25×106 m=25μmt = \frac{5 \times 10^{-3}}{200} = \frac{5 \times 10^{-3}}{2 \times 10^2} = 2.5 \times 10^{-5} \text{ m} = 25 \times 10^{-6} \text{ m} = 25 \, \mu \text{m}.

In the second scenario, the sheets are replaced by two sheets of the same material with refractive index μ=μ1+μ22=1.6+1.42=1.5\mu = \frac{\mu_1 + \mu_2}{2} = \frac{1.6 + 1.4}{2} = 1.5. The thicknesses are t1t_1 and t2t_2 in front of S1S_1 and S2S_2 respectively. The central maximum is observed at yc=8y_c' = 8 mm from O on the same side as before, so yc=8y_c' = 8 mm.

We are given that t=t1+t22=tt' = \frac{t_1 + t_2}{2} = t. So, t1+t2=2t=2×25μm=50μmt_1 + t_2 = 2t = 2 \times 25 \, \mu \text{m} = 50 \, \mu \text{m}.

The shift of the central maximum is:

yc=Dd[(μ1)t1(μ1)t2]=Dd(μ1)(t1t2)y_c' = \frac{D}{d} [(\mu - 1)t_1 - (\mu - 1)t_2] = \frac{D}{d} (\mu - 1)(t_1 - t_2)

8×103 m=1 m1×103 m(1.51)(t1t2)8 \times 10^{-3} \text{ m} = \frac{1 \text{ m}}{1 \times 10^{-3} \text{ m}} (1.5 - 1)(t_1 - t_2)

8×103=103(0.5)(t1t2)8 \times 10^{-3} = 10^3 (0.5)(t_1 - t_2)

8×103=500(t1t2)8 \times 10^{-3} = 500(t_1 - t_2)

t1t2=8×103500=8×1035×102=1.6×105 m=16×106 m=16μmt_1 - t_2 = \frac{8 \times 10^{-3}}{500} = \frac{8 \times 10^{-3}}{5 \times 10^2} = 1.6 \times 10^{-5} \text{ m} = 16 \times 10^{-6} \text{ m} = 16 \, \mu \text{m}.

We have a system of two linear equations for t1t_1 and t2t_2:

  1. t1+t2=50μmt_1 + t_2 = 50 \, \mu \text{m}

  2. t1t2=16μmt_1 - t_2 = 16 \, \mu \text{m}

Adding the two equations:

(t1+t2)+(t1t2)=50+16(t_1 + t_2) + (t_1 - t_2) = 50 + 16

2t1=662t_1 = 66

t1=662=33μmt_1 = \frac{66}{2} = 33 \, \mu \text{m}.

Substituting t1=33t_1 = 33 into the first equation:

33+t2=5033 + t_2 = 50

t2=5033=17μmt_2 = 50 - 33 = 17 \, \mu \text{m}.

The thickness t1t_1 is 33μm33 \, \mu \text{m}. We need to mark the answer in μm\mu m to the nearest integer. Since 33 is an integer, the answer is 33.