Solveeit Logo

Question

Physics Question on Youngs double slit experiment

In a YDSE, the light of wavelength I=5000I=5000\,� is used, which emerges in phase from two slits a distance d=3×107md=3 \times 10^{-7} m apart. A transparent sheet of thickness t=1.5×107mt=1.5 \times 10^{-7} m refractive index μ=1.17\mu=1.17 is placed over one of the slits. what is the new angular position of the central maxima of the interference pattern, from the center of the screen? Find the value of yy.

A

4.94.9^{\circ} and D(μ1)t2d\frac{D(\mu-1) t}{2 d}

B

4.94.9^{\circ} and D(μ1)td\frac{D(\mu-1) t}{ d}

C

3.93.9^{\circ} and D(μ1)td\frac{D(\mu-1) t}{ d}

D

2.92.9^{\circ} and D(μ1)td\frac{D(\mu-1) t}{ d}

Answer

4.94.9^{\circ} and D(μ1)td\frac{D(\mu-1) t}{ d}

Explanation

Solution

The path difference when transparent sheet is introduced
Δx=(μ1)t\Delta x=(\mu-1) t
If the central maxima occupies position of nth fringe ,then
(μ1)t=nλ=dsinθ(\mu-1) t=n \lambda=d \sin \theta
sinθ=(μ1)td\Rightarrow \sin \theta=\frac{(\mu-1) t}{d}
=(1.171)×1.5×1073×107=0.085=\frac{(1.17-1) \times 1.5 \times 10^{-7}}{3 \times 10^{-7}}=0.085
Therefore, angular position of central maxima
θ=sin1(0.085)=4.884.9\theta=\sin ^{-1}(0.085)=4.88^{\circ} \approx 4.9
For For small angles, sinθθtanθ\sin \theta \approx \theta \approx \tan \theta
tanθ=yD\Rightarrow \tan \theta=\frac{y}{D}
yD=(μ1)td\therefore \frac{y}{D} =\frac{(\mu-1) t}{d}
y=D(μ1)tD\Rightarrow y=\frac{D(\mu-1) t}{D}