Solveeit Logo

Question

Question: In a YDSE experiment, I<sub>0</sub> is given to be the intensity of the central bright fringe &b is ...

In a YDSE experiment, I0 is given to be the intensity of the central bright fringe &b is the fringe width. Then, at a distance y from central bright fringe, the intensity will be –

A

I0cos (πyβ)\left( \frac{\pi y}{\beta} \right)

B

I0cos2(πyβ)I_{0}\cos^{2}\left( \frac{\pi y}{\beta} \right)

C

I0cos(2πyβ)I_{0}\cos\left( \frac{2\pi y}{\beta} \right)

D

I0cos2(πy2β)I_{0}\cos^{2}\left( \frac{\pi y}{2\beta} \right)

Answer

I0cos2(πyβ)I_{0}\cos^{2}\left( \frac{\pi y}{\beta} \right)

Explanation

Solution

Dx = yβ\frac{y}{\beta} ̃ Df = 2πλ\frac{2\pi}{\lambda} × Dx = 2πyβ\frac{2\pi y}{\beta}

Inet = I + I + 2I cos Df

= 2I(1+cos(2πyβ))\left( 1 + \cos\left( \frac{2\pi y}{\beta} \right) \right) = 4I cos2(πyβ)\left( \frac{\pi y}{\beta} \right)

= I0 cos2 (πyβ)\left( \frac{\pi y}{\beta} \right) [Q I0 = 4I]