Solveeit Logo

Question

Question: In a \[\vartriangle ABC\], the values of a, c, A are given and \[{b_1},{b_2}\] are two values of the...

In a ABC\vartriangle ABC, the values of a, c, A are given and b1,b2{b_1},{b_2} are two values of the third side b such that b2=2b1{b_2} = 2{b_1}. Then sinA=\sin A = ?
A.9a2c28a2\sqrt {\dfrac{{9{a^2} - {c^2}}}{{8{a^2}}}}
B. 9a2c28c2\sqrt {\dfrac{{9{a^2} - {c^2}}}{{8{c^2}}}}
C. 9a2+c28a2\sqrt {\dfrac{{9{a^2} + {c^2}}}{{8{a^2}}}}
D. None of these

Explanation

Solution

We use the law of cosines to calculate the cosine of angle A. Form a quadratic equation with variable ‘b’. Since b1,b2{b_1},{b_2} are two values of the third side b means that b1,b2{b_1},{b_2} are two roots of quadratic equation. Use the relation of roots with the coefficients of the equation to find the value of sine of angle A.

  • In triangle ABC, if side a has opposite angle A, side b has opposite angle B and side c has opposite angle C then cosA=b2+c2a22bc\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}
  • If a quadratic equation ax2+bx+c=0a{x^2} + bx + c = 0 has roots α,β\alpha ,\beta then we have relation between coefficients of equation and roots of equation as: α+β=ba\alpha + \beta = \dfrac{{ - b}}{a} and αβ=ca\alpha \beta = \dfrac{c}{a}

Complete step by step solution:
We have a triangle ABC, sides opposite to angle A, B and C are a, b and c respectively.

Use law of cosines
cosA=b2+c2a22bc\Rightarrow \cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}
Cross multiply the values
2bccosA=b2+c2a2\Rightarrow 2bc\cos A = {b^2} + {c^2} - {a^2}
Shift all values to one side of the equation
b22bccosA+c2a2=0\Rightarrow {b^2} - 2bc\cos A + {c^2} - {a^2} = 0
This forms a quadratic equation in ‘b’
b2(2ccosA)b+(c2a2)=0\Rightarrow {b^2} - \left( {2c\cos A} \right)b + \left( {{c^2} - {a^2}} \right) = 0...............… (1)
Since it is given b1,b2{b_1},{b_2}are two values of the third side b
Then b1,b2{b_1},{b_2}are the roots of the equation (1)
Then we know b1+b2=(2ccosA)1{b_1} + {b_2} = \dfrac{{ - ( - 2c\cos A)}}{1}andb1b2=c2a21{b_1}{b_2} = \dfrac{{{c^2} - {a^2}}}{1}
I.e. b1+b2=2ccosA{b_1} + {b_2} = 2c\cos Aandb1b2=c2a2{b_1}{b_2} = {c^2} - {a^2}....................… (2)
Also, b2=2b1{b_2} = 2{b_1}
Substitute the value of b2=2b1{b_2} = 2{b_1}in b1+b2=2ccosA{b_1} + {b_2} = 2c\cos A
b1+2b1=2ccosA\Rightarrow {b_1} + 2{b_1} = 2c\cos A
3b1=2ccosA\Rightarrow 3{b_1} = 2c\cos A
Divide both sides by 3
b1=2ccosA3\Rightarrow {b_1} = \dfrac{{2c\cos A}}{3}.................… (3)
Substitute the value of b2=2b1{b_2} = 2{b_1}in b1b2=c2a2{b_1}{b_2} = {c^2} - {a^2}
b1×2b1=c2a2\Rightarrow {b_1} \times 2{b_1} = {c^2} - {a^2}
2b12=c2a2\Rightarrow 2{b_1}^2 = {c^2} - {a^2}
Divide both sides by 2
b12=c2a22\Rightarrow {b_1}^2 = \dfrac{{{c^2} - {a^2}}}{2}.............… (4)
Square equation (3) and equate it to equation (4)
(2ccosA3)2=c2a22\Rightarrow {\left( {\dfrac{{2c\cos A}}{3}} \right)^2} = \dfrac{{{c^2} - {a^2}}}{2}
Cross multiply the values
2×4c2cos2A9=c2a2\Rightarrow \dfrac{{2 \times 4{c^2}{{\cos }^2}A}}{9} = {c^2} - {a^2}
8c2cos2A9=c2a2\Rightarrow \dfrac{{8{c^2}{{\cos }^2}A}}{9} = {c^2} - {a^2}
Cross multiply the values
8c2cos2A=9c29a2\Rightarrow 8{c^2}{\cos ^2}A = 9{c^2} - 9{a^2}
Divide both sides by 8c28{c^2}
cos2A=9c29a28c2\Rightarrow {\cos ^2}A = \dfrac{{9{c^2} - 9{a^2}}}{{8{c^2}}}
Since we know cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x
1sin2A=9c29a28c2\Rightarrow 1 - {\sin ^2}A = \dfrac{{9{c^2} - 9{a^2}}}{{8{c^2}}}
Shift all constant values to one side of the equation
19c29a28c2=sin2A\Rightarrow 1 - \dfrac{{9{c^2} - 9{a^2}}}{{8{c^2}}} = {\sin ^2}A
Take LCM in LHS
8c29c2+9a28c2=sin2A\Rightarrow \dfrac{{8{c^2} - 9{c^2} + 9{a^2}}}{{8{c^2}}} = {\sin ^2}A
9a2c28c2=sin2A\Rightarrow \dfrac{{9{a^2} - {c^2}}}{{8{c^2}}} = {\sin ^2}A
Take Square root on both sides of the equation
9a2c28c2=sin2A\Rightarrow \sqrt {\dfrac{{9{a^2} - {c^2}}}{{8{c^2}}}} = \sqrt {{{\sin }^2}A}
Cancel square root by square power
sinA=9a2c28c2\Rightarrow \sin A = \sqrt {\dfrac{{9{a^2} - {c^2}}}{{8{c^2}}}}
\therefore The value of sinA\sin A is 9a2c28c2\sqrt {\dfrac{{9{a^2} - {c^2}}}{{8{c^2}}}} .

\therefore Correct option is B.

Note: Students are likely to make the mistake of assuming the variable in the quadratic equation as ‘c’ which is wrong because we are given the values of a, c and A are given. The question states the values of ‘b’ are b1,b2{b_1},{b_2} so the variable has to be ‘b’ in the quadratic equation then only we can find its roots.