Solveeit Logo

Question

Physics Question on Alternating current

In a uniform magnetic field of induction B a wire in the form of semicircle of radius r rotates about the diameter of the circle with angular frequency ??. The axis of rotation is perpendicular to the field. If the total resistance of the circuit is R the mean power generated per period of rotation is

A

Bπr2ω2R\frac{B\pi r^{2}\omega}{2R}

B

(Bπr2ω)22R\frac{\left(B\pi r^{2}\omega\right)^{2}}{2R}

C

(Bπrω)22R\frac{\left(B\pi r\omega\right)^{2}}{2R}

D

(Bπrω2)28R\frac{\left(B\pi r\omega^{2}\right)^{2}}{8R}

Answer

(Bπr2ω)22R\frac{\left(B\pi r^{2}\omega\right)^{2}}{2R}

Explanation

Solution

Magnetic flux =BAcosθ=B.πr22cosωt= BA \,cos\,\theta = B. \frac{\pi r^{2}}{2}cos\,\omega t εind=dϕdt=12Bπr2ωsinωt\therefore\varepsilon_{ind} =\frac{d\phi}{dt} = \frac{1}{2} B\pi r^{2} \, \omega \,sin \,\omega t P=εind2RBπ2r4ω2sin2ωt4R\therefore P = \frac{\varepsilon^{2}_{ind}}{R} \frac{B\pi^{2} r^{4} \, \omega^{2} \,sin^{2} \,\omega t}{4R} Now, <sin2?t>=??(meanvalue)< sin^{2}\, ?t > = ?? (mean value) \therefore < P > = \frac{\left(B\pi r^{2}\omega\right)^{2}}{8R}.$