Solveeit Logo

Question

Question: In a uniform magnetic field *B* a wire in the form of a semicircle of radius r rotates about the dia...

In a uniform magnetic field B a wire in the form of a semicircle of radius r rotates about the diameter of the circle with angular frequencyω\omega. The axis of rotation is perpendicular to the field. If the total resistance of the circuit is R, the mean power generated per period of rotation is

A

Bπr2ω2R\frac{B\pi r^{2}\omega}{2R}

B

(Bπr2ω)28R\frac{\left( B\pi r^{2}\omega \right)^{2}}{8R}

C

(Bπrω)22R\frac{(B\pi r\omega)^{2}}{2R}

D

(Bπrω2)28R\frac{\left( B\pi r\omega^{2} \right)^{2}}{8R}

Answer

(Bπr2ω)28R\frac{\left( B\pi r^{2}\omega \right)^{2}}{8R}

Explanation

Solution

φ=Bπr22cosωt\varphi = B\frac{\pi r^{2}}{2}\cos\omega t

ε=dφdt=12Bπr2ωsinωt\therefore\varepsilon = - \frac{d\varphi}{dt} = \frac{1}{2}B\pi r^{2}\omega\sin\omega t

P=ε2R=B2π2r4ω2sin2ωt4R\therefore P = \frac{\varepsilon^{2}}{R} = \frac{B^{2}\pi^{2}r^{4}\omega^{2}\sin^{2}\omega t}{4R}

<P>=(Bπr2ω2)8R\therefore < P > = \frac{(B\pi r^{2}\omega^{2})}{8R} (<sin2ωt>=12)\left( \because < \sin^{2}\omega t > = \frac{1}{2} \right)