Solveeit Logo

Question

Question: In a triangle XYZ, let x, y, z be the lengths of sides opposite to the angle X, Y, Z, respectively a...

In a triangle XYZ, let x, y, z be the lengths of sides opposite to the angle X, Y, Z, respectively and 2s = x + y + z. If sx4=sy3=sz2\dfrac{s-x}{4}=\dfrac{s-y}{3}=\dfrac{s-z}{2} and area of in circle of the triangle XYZ is
8π3\dfrac{8\pi }{3}
(a)Area of the triangle XYZ is 666\sqrt{6}
(b)The radius of circumcircle of the triangle XYZ is 3566\dfrac{35}{6}\sqrt{6}
(c)sinX2sinY2sinZ2=435\sin \dfrac{X}{2}\sin \dfrac{Y}{2}\sin \dfrac{Z}{2}=\dfrac{4}{35}
(d)sin2(X+Y2)=35{{\sin }^{2}}\left( \dfrac{X+Y}{2} \right)=\dfrac{3}{5}

Explanation

Solution

Hint: Equate sx4=sy3=sz2\dfrac{s-x}{4}=\dfrac{s-y}{3}=\dfrac{s-z}{2}to a constant k to get values of x, y, z in terms of 5.

Complete step-by-step answer:
Get the radius of incircle using the area of the circle as πr2\pi {{r}^{2}}. Use the relation r=Δsr=\dfrac{\Delta }{s} to get the value of area i.e. Δ\Delta in terms of ‘s’. calculate Δ\Delta in terms of ‘s’ by using heron’s formula. It is given as
Δ=s(sx)(sy)(sz)\Delta =\sqrt{s\left( s-x \right)\left( s-y \right)\left( s-z \right)}
Where, s=x+y+z2s=\dfrac{x+y+z}{2}, x, y, z are sides of the triangle.
Use relation r=4Rsinx2siny2sinz2r=4R\sin \dfrac{x}{2}\sin \dfrac{y}{2}\sin \dfrac{z}{2} to get value of sinx2siny2sinz2\sin \dfrac{x}{2}\sin \dfrac{y}{2}\sin \dfrac{z}{2}.
And use the cosine formula as well; it is given as cosθ=a2+b2c22ab\cos \theta =\dfrac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}{2ab}
Where, θ\theta is the angle between ‘a’ ‘b’, and a, b, c are representing the sides of a triangle.

Here, we are given a triangle xyz, with sides of lengths x, y, z opposite to the angles x, y, z respectively, and hence, we need to verify the given options, if following equations are given as
2s=x+y+z(i)2s = x + y + z ……………………(i)
sx4=sy3=sz2\dfrac{s-x}{4}=\dfrac{s-y}{3}=\dfrac{s-z}{2}……………….(ii)
Area of in circle =8π3\dfrac{8\pi }{3}…………………(iii)

Let us equate all the equal fractions of equation (ii) to a constant value ‘k’. so, we get
sx4=k,sy3=k,sz2=k\dfrac{s-x}{4}=k,\dfrac{s-y}{3}=k,\dfrac{s-z}{2}=k
sx=4ks-x=4k ………………(iv)
sy=3ks-y=3k ………………(v)
sz=2ks-z=2k …………….(vi) $$$$
Now, we can add above three equations as
(s - x) + (s – y) + (s – z) = 4k + 3k + 2k
3s – (x + y + z) = 9k
Now, we can replace x + y + z in the above equation by ‘2s’ from the equation (i). so, we get
3s – 2s = 9k
s = 9k,
k=s9k=\dfrac{s}{9}
Now, we can get values of x, y, z from the equations (iv), (v), (vi) as
sx=4s9 x=s4s9=5s9 x=5s9 \begin{aligned} & s-x=\dfrac{4s}{9} \\\ & x=s-\dfrac{4s}{9}=\dfrac{5s}{9} \\\ & x=\dfrac{5s}{9} \\\ \end{aligned}
Similarly, we get value of ‘y’ as
sy=3s9 y=s3s9=6s9=2s3 y=2s3 \begin{aligned} & s-y=\dfrac{3s}{9} \\\ & y=s-\dfrac{3s}{9}=\dfrac{6s}{9}=\dfrac{2s}{3} \\\ & y=\dfrac{2s}{3} \\\ \end{aligned}
And, we get value of ‘z’ as
sz=2s9 z=s2s9=7s9 z=7s9 \begin{aligned} & s-z=\dfrac{2s}{9} \\\ & z=s-\dfrac{2s}{9}=\dfrac{7s}{9} \\\ & z=\dfrac{7s}{9} \\\ \end{aligned}
Hence, we get value of (x, y, z) as
(5s9,2s3,7s9)\left( \dfrac{5s}{9},\dfrac{2s}{3},\dfrac{7s}{9} \right)
Now, we know the area of a circle with radius R is given as πr2\pi {{r}^{2}}.
So, let radius of incircle be ‘r’
So, we get area of in circle as = πr2\pi {{r}^{2}}
We are given the area of the circle as 8π3\dfrac{8\pi }{3} from the equation (iii). So, we get
πr2=8π3 r2=83 \begin{aligned} & \pi {{r}^{2}}=\dfrac{8\pi }{3} \\\ & {{r}^{2}}=\dfrac{8}{3} \\\ \end{aligned}
r=83r=\sqrt{\dfrac{8}{3}}…………….(vii)
Now, we know the relation among
s=x+y+z2s=\dfrac{x+y+z}{2}, radius of in circle ‘r’ and area of the triangle Δ'\Delta ' is
Δs=r\dfrac{\Delta }{s}=r ……………………..(viii)
So, we can get relation from equations (vii) and (viii) as
Δs=83 Δ=s83 \begin{aligned} & \dfrac{\Delta }{s}=\sqrt{\dfrac{8}{3}} \\\ & \Delta =s\sqrt{\dfrac{8}{3}} \\\ \end{aligned}
On squaring both sides, we get
Δ2=s283=83s2{{\Delta }^{2}}={{s}^{2}}\dfrac{8}{3}=\dfrac{8}{3}{{s}^{2}}
Δ2=8s23{{\Delta }^{2}}=\dfrac{8{{s}^{2}}}{3}……………(ix)
Now, we know area of a triangle by heron’s formula can be given as
Δ=s(sa)(sb)(sc)\Delta =\sqrt{s\left( s-a \right)\left( s-b \right)\left( s-c \right)}……………….. (x)
Where, a, b, c are sides of the triangle and s=a+b+c2s=\dfrac{a+b+c}{2}.
So, we can get area of triangle given here as
Δ=s(sx)(sy)(sz)\Delta =\sqrt{s\left( s-x \right)\left( s-y \right)\left( s-z \right)}
Now, we can put values of (x, y, z) to the above equation as (5s9,2s3,7s9)\left( \dfrac{5s}{9},\dfrac{2s}{3},\dfrac{7s}{9} \right).
So, we get
Δ=s(s5s9)(s2s3)(s7s9) Δ=(s)(4s9)(s3)(2s9) Δ=8s4243 \begin{aligned} & \Delta =\sqrt{s\left( s-\dfrac{5s}{9} \right)\left( s-\dfrac{2s}{3} \right)\left( s-\dfrac{7s}{9} \right)} \\\ & \Delta =\sqrt{\left( s \right)\left( \dfrac{4s}{9} \right)\left( \dfrac{s}{3} \right)\left( \dfrac{2s}{9} \right)} \\\ & \Delta =\sqrt{\dfrac{8{{s}^{4}}}{{{243}}}} \\\ \end{aligned}
Squaring both sides of the above equation, we get
Δ2=8s4243{{\Delta }^{2}}=\dfrac{8{{s}^{4}}}{243}……………….(xi)
Now, from equation (ix) and (xi), we get
8s43×81=83s2 s2=81 \begin{aligned} & \dfrac{8{{s}^{4}}}{3\times 81}=\dfrac{8}{3}{{s}^{2}} \\\ & {{s}^{2}}=81 \\\ \end{aligned}
s = 9
So, we get value of ‘s’ as
s = 9…………….(xii)
hence, from equation (ix), we get
Δ2=83s2=83×9×9=27×8{{\Delta }^{2}}=\dfrac{8}{3}{{s}^{2}}=\dfrac{8}{3}\times 9\times 9=27\times 8
Taking square root to both the sides of the equation, we get
Δ=3×23×2=66 Δ=66 \begin{aligned} & \Delta =3\times 2\sqrt{3\times 2}=6\sqrt{6} \\\ & \Delta =6\sqrt{6} \\\ \end{aligned}
Hence, the area of triangle xyz66 square units\to \text{6}\sqrt{\text{6}}\text{ square units}.
So, option (a) is the correct answer.
We know the relation sides of a triangle x, y, z and radius of circumcircle ‘R’ and area of triangle Δ'\Delta ' can be given as
R=xyz4ΔR=\dfrac{xyz}{4\Delta }
So, we can put values of x, y, z and Δ\Delta to the above equation so, we get
R=5s9×2s3×7s94×66 R=70s39×3×9×66×4 \begin{aligned} & R=\dfrac{\dfrac{5s}{9}\times \dfrac{2s}{3}\times \dfrac{7s}{9}}{4\times 6\sqrt{6}} \\\ & R=\dfrac{70{{s}^{3}}}{9\times 3\times 9\times 6\sqrt{6}\times 4} \\\ \end{aligned}
We can put the value of s as 9. So, we get
R=70×9×9×99×3×9×66×4 R=3546 \begin{aligned} & R=\dfrac{70\times 9\times 9\times 9}{9\times 3\times 9\times 6\sqrt{6}\times 4} \\\ & R=\dfrac{35}{4\sqrt{6}} \\\ \end{aligned}
Multiply and divide the above equation by 6\sqrt{6}, we get
R=3546×66=35624 R=35624 \begin{aligned} & R=\dfrac{35}{4\sqrt{6}}\times \dfrac{\sqrt{6}}{\sqrt{6}}=\dfrac{35\sqrt{6}}{24} \\\ & R=\dfrac{35\sqrt{6}}{24} \\\ \end{aligned}
Hence, option (b) i.e. Radius of circumcircle of the triangle xyz is 3566\dfrac{35\sqrt{6}}{6} is incorrect as radius of circumcircle is 35624\dfrac{35\sqrt{6}}{24}.
Now, we know the relation
r=4Rsinx2siny2sinz2r=4R\sin \dfrac{x}{2}\sin \dfrac{y}{2}\sin \dfrac{z}{2} ………….(xiii)
Where, x, y, z are angles of the triangle r and R are radius of incircle and circumcircle respectively, so, we can put value of r and R as 83,3546\sqrt{\dfrac{8}{3}},\dfrac{35}{4\sqrt{6}}to the equation (xiii) to get the value of sinx2siny2sinz2.\sin \dfrac{x}{2}\sin \dfrac{y}{2}\sin \dfrac{z}{2}.
So, we get
83=3546×4sinx2siny2sinz2 635×83=sinx2siny2sinz2 1635=435=sinx2siny2sinz2 \begin{aligned} & \sqrt{\dfrac{8}{3}}=\dfrac{35}{4\sqrt{6}}\times 4\sin \dfrac{x}{2}\sin \dfrac{y}{2}\sin \dfrac{z}{2} \\\ & \dfrac{\sqrt{6}}{35}\times \dfrac{\sqrt{8}}{\sqrt{3}}=\sin \dfrac{x}{2}\sin \dfrac{y}{2}\sin \dfrac{z}{2} \\\ & \dfrac{\sqrt{16}}{35}=\dfrac{4}{35}=\sin \dfrac{x}{2}\sin \dfrac{y}{2}\sin \dfrac{z}{2} \\\ \end{aligned}
So, we get
sinx2siny2sinz2=435\sin \dfrac{x}{2}\sin \dfrac{y}{2}\sin \dfrac{z}{2}=\dfrac{4}{35}
Hence, option (c) is the correct answer.
Now, we can get the value of sin2(x+y2){{\sin }^{2}}\left( \dfrac{x+y}{2} \right) by the following way. Let the value of sin2x+y2M{{\sin }^{2}}\dfrac{x+y}{2}\to 'M'. M=sin2(x+y2)M={{\sin }^{2}}\left( \dfrac{x+y}{2} \right) …………………(xiv)
As we know, the sum of interior angles of a triangle is 180{{180}^{\circ }}. So, we get
x + y + z = 180{{180}^{\circ }}.
x + y = 180 – z
so, we get equation (xiv) as
M=sin2(180z2) M=sin2(90z2) M=(sin(90z2))2 \begin{aligned} & M={{\sin }^{2}}\left( \dfrac{180-z}{2} \right) \\\ & M={{\sin }^{2}}\left( 90-\dfrac{z}{2} \right) \\\ & M={{\left( \sin \left( 90-\dfrac{z}{2} \right) \right)}^{2}} \\\ \end{aligned}
We know
sin(90θ)=cosθ\sin \left( 90-\theta \right)=\cos \theta
So, we get value of M as
M=cos2z2 M=cos2z2 \begin{aligned} & M={{\cos }^{2}}\dfrac{z}{2} \\\ & M={{\cos }^{2}}\dfrac{z}{2} \\\ \end{aligned}
We know the trigonometric identity of cos2θ\cos 2\theta is given as
cos2θ=2cos2θ1. cos2θ=1+cos2θ2 \begin{aligned} & \cos 2\theta =2{{\cos }^{2}}\theta -1. \\\ & {{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2} \\\ \end{aligned}
Now, we can put θ=z2\theta =\dfrac{z}{2}to the above equation, so, we get
cos2(z2)=1+cosz2{{\cos }^{2}}\left( \dfrac{z}{2} \right)=\dfrac{1+\cos z}{2}
So, we get value of M as
M=1+cosz2M=\dfrac{1+\cos z}{2} ……………….(xv)
Now, we know the cosine formula is given as
cosθ=b2+c2a22bc\cos \theta =\dfrac{{{b}^{2}}+{{c}^{2}}-{{a}^{2}}}{2bc}
Where θ\theta is the angle between ‘b’, ‘c’, and a, b, c are the sides of a triangle.
So, we can write value of cosz\cos z from the above equation and using diagram as
cosz=x2+y2z22xy\operatorname{cosz}=\dfrac{{{x}^{2}}+{{y}^{2}}-{{z}^{2}}}{2xy}
Now, we can put value of (x, y, z) (5s9,2s3,7s9)\to \left( \dfrac{5s}{9},\dfrac{2s}{3},\dfrac{7s}{9} \right) to the above equation. So, we get
cosz=(5s9)2+(2s3)2(7s9)22×5s9×2s3 cosz=25s281+4s2949s28120s2×381 cosz=25s2+36s249s28160s281 cosz=s2[6149]60s2=1260 cosz=15 \begin{aligned} & \cos z=\dfrac{{{\left( \dfrac{5s}{9} \right)}^{2}}+{{\left( \dfrac{2s}{3} \right)}^{2}}-{{\left( \dfrac{7s}{9} \right)}^{2}}}{2\times \dfrac{5s}{9}\times \dfrac{2s}{3}} \\\ & \cos z=\dfrac{\dfrac{25{{s}^{2}}}{81}+\dfrac{4{{s}^{2}}}{9}-\dfrac{49{{s}^{2}}}{81}}{\dfrac{20{{s}^{2}}\times 3}{81}} \\\ & \cos z=\dfrac{\dfrac{25{{s}^{2}}+36{{s}^{2}}-49{{s}^{2}}}{81}}{\dfrac{60{{s}^{2}}}{81}} \\\ & \cos z=\dfrac{{{s}^{2}}\left[ 61-49 \right]}{60{{s}^{2}}}=\dfrac{12}{60} \\\ & \cos z=\dfrac{1}{5} \\\ \end{aligned}
Hence, we can get value of M as
M=1+152 M=65×2=35 M=35 \begin{aligned} & M=\dfrac{1+\dfrac{1}{5}}{2} \\\ & M=\dfrac{6}{5\times 2}=\dfrac{3}{5} \\\ & M=\dfrac{3}{5} \\\ \end{aligned}
Hence, value of sin2(x+22)35{{\sin }^{2}}\left( \dfrac{x+2}{2} \right)\to \dfrac{3}{5}
So, option (d) is the correct answer.

Note: Identities play an important role to solve these kinds of problems. Relations among the terms involved in the question makes the solution flexible and will take less time.
One may involve the sine rule for the calculation of sin2(x+y2)(1+cosz2){{\sin }^{2}}\left( \dfrac{x+y}{2} \right)\to \left( \dfrac{1+\cos z}{2} \right). It is given as
sinxx=sinyy=sinzz=12R\dfrac{\sin x}{x}=\dfrac{\sin y}{y}=\dfrac{\sin z}{z}=\dfrac{1}{2R}
Where, we can get sinz\sin z, by putting the value of z and R.
And hence, calculate cosz\cos z by the equation cosz=1sin2z\cos z=\sqrt{1-{{\sin }^{2}}z}.