Solveeit Logo

Question

Question: In a triangle \(\vartriangle ABC\), \(\tan A + \tan B + \tan C = 6\) and \(\tan A\tan B = 2\), then ...

In a triangle ABC\vartriangle ABC, tanA+tanB+tanC=6\tan A + \tan B + \tan C = 6 and tanAtanB=2\tan A\tan B = 2, then the values of tanA,tanB,tanC\tan A,\tan B,\tan C are

  1. 1,2,3
  2. 3,23,733,\dfrac{2}{3},\dfrac{7}{3}
  3. 4,12,324,\dfrac{1}{2},\dfrac{3}{2}
  4. none of these
Explanation

Solution

We will use the angle sum property of a triangle and will write the condition, A+B+C=180\angle A + \angle B + \angle C = {180^ \circ } and then we will take tan on both sides. Then, apply the formula tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}, to simplify the expression. We will cross multiply and substitute the given values to get the required values.

Complete step-by-step answer:
We are given that tanA+tanB+tanC=6\tan A + \tan B + \tan C = 6 and tanAtanB=2\tan A\tan B = 2.
We have to find the values of tanA,tanB,tanC\tan A,\tan B,\tan C.
If A,BA,B and CC are three angles of a triangle, the sum of three angles is 180{180^ \circ }.
Then, A+B+C=180\angle A + \angle B + \angle C = {180^ \circ }
And A+B=180C\angle A + \angle B = {180^ \circ } - \angle C
Taking tan on both sides.
tan(A+B)=tan(180C)\tan \left( {\angle A + \angle B} \right) = \tan \left( {{{180}^ \circ } - \angle C} \right)
We know that tan(180θ)\tan \left( {{{180}^ \circ } - \theta } \right) lies in second quadrant and is equal to tanθ- \tan \theta
tan(A+B)=tanC\tan \left( {\angle A + \angle B} \right) = - \tan \angle C
Now, we will apply the formula, tan(A+B)\tan \left( {\angle A + \angle B} \right) which is tanA+tanB1tanAtanB\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}
Then,
tanA+tanB1tanAtanB=tanC\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} = - \tan C
On cross-multiplying the equation, we will get,
tanA+tanB=tanC+tanAtanBtanC tanA+tanB+tanC=tanAtanBtanC  \tan A + \tan B = - \tan C + \tan A\tan B\tan C \\\ \Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C \\\
Now, we will substitute the values of tanA+tanB+tanC=6\tan A + \tan B + \tan C = 6 and tanAtanB=2\tan A\tan B = 2 in the above equation
6=2tanC tanC=3  6 = 2\tan C \\\ \tan C = 3 \\\
We will substitute this value in tanA+tanB+tanC=6\tan A + \tan B + \tan C = 6
tanA+tanB+3=6\tan A + \tan B + 3 = 6
tanA+tanB=3\Rightarrow \tan A + \tan B = 3 eqn. (1)
Now, we know that (a+b)24ab=(ab)2{\left( {a + b} \right)^2} - 4ab = {\left( {a - b} \right)^2}
Then,
(tanA+tanB)24tanAtanB=(tanAtanB)2{\left( {\tan A + \tan B} \right)^2} - 4\tan A\tan B = {\left( {\tan A - \tan B} \right)^2}
Substitute the known values in the
(3)24(2)=(tanAtanB)2 98=(tanAtanB)2  {\left( 3 \right)^2} - 4\left( 2 \right) = {\left( {\tan A - \tan B} \right)^2} \\\ \Rightarrow 9 - 8 = {\left( {\tan A - \tan B} \right)^2} \\\
tanAtanB=1\Rightarrow \tan A - \tan B = 1 eqn. (2)
We will add equation (1) and equation (2) to find the value of tanA\tan A
tanA+tanB+tanAtanB=1+3 2tanA=4 tanA=2  \tan A + \tan B + \tan A - \tan B = 1 + 3 \\\ \Rightarrow 2\tan A = 4 \\\ \Rightarrow \tan A = 2 \\\
Substitute the value of tanA\tan A in equation (1) to find the value of tanB\tan B.
2+tanB=3 tanB=1  2 + \tan B = 3 \\\ \Rightarrow \tan B = 1 \\\
Hence, the value of tanA\tan A is 2, tanB\tan B is 1 and tanC\tan C is 3.
Hence, option A is correct.

Note: Since, A,BA,B and CC are three angles of a triangle, their sum is equal to 180{180^ \circ }. One must the formula of tan(A+B)=tanA+tanB1tanAtanB\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} to do this question correctly, Similar type of question is also possible with cot ratio of triangle.