Solveeit Logo

Question

Question: In a triangle PQR, \(\angle\)R = p/2. If tan(P/2) and tan(Q/2) are the roots of the equation ax<sup>...

In a triangle PQR, \angleR = p/2. If tan(P/2) and tan(Q/2) are the roots of the equation ax2 + bx + c = 0 where a \neq0 then –

A

a + b = c

B

b + c = a

C

a + c = b

D

b = c

Answer

a + b = c

Explanation

Solution

As tan(P/2) & tan(Q/2) roots of ax2 + bx + c = 0

We have tan (P2)\left( \frac{P}{2} \right) + tan(Q2)\left( \frac{Q}{2} \right) = ba\frac{- b}{a} ……(i)

tan (P2)\left( \frac{P}{2} \right). tan(Q2)\left( \frac{Q}{2} \right) = ca\frac{c}{a} ……….(ii)

also \angleR = p/2 then \angleP + \angleQ = p/2

P + Q = p/2

ŽP2\frac{P}{2} + Q2\frac{Q}{2} = π4\frac{\pi}{4}

Žtan(P2+Q2)\left( \frac{P}{2} + \frac{Q}{2} \right)= tanπ4\frac{\pi}{4}

Žtan(P2)+tan(Q2)1tan(P2)tan(Q2)\frac{\tan\left( \frac{P}{2} \right) + \tan\left( \frac{Q}{2} \right)}{1 - \tan\left( \frac{P}{2} \right)\tan\left( \frac{Q}{2} \right)}= 1

Žba1ca\frac{- \frac{b}{a}}{1 - \frac{c}{a}}= 1

Ž – b = a – c

Ž a + b = c