Solveeit Logo

Question

Mathematics Question on Quadratic Equations

In a PQR,R=π2,iftan(P2)\triangle PQR, \angle R = \frac{\pi}{2} , \, if \, tan \, \bigg( \frac{ P}{2}\bigg) and , tan (Q2) \bigg( \frac{ Q}{2}\bigg) are the roots of the equation ax2+bx+c=0(a0) ax^2 + bx + c = 0 \, (a \ne 0 ), then

A

a + b = c

B

b + c = a

C

a + c = b

D

b = c

Answer

a + b = c

Explanation

Solution

It is given that, tan (P / 2) and tan (Q / 2) are the roots of
the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0
and R=π/2\angle R = \pi / 2
\therefore tan ( P / 2) + tan (Q/ 2) = - b / a
and tan (P / 2) tan (Q / 2) = c/a
Since, P + Q + R = 180 180^\circ
P+Q=90\Rightarrow P + Q = 90^\circ
P+Q2=45\Rightarrow \frac{ P + Q }{ 2} = 45^\circ
tan(P+Q2)=tan45\Rightarrow tan \, \bigg( \frac{ P + Q }{ 2} \bigg) = tan \, 45 ^\circ
tan(P/2)+tan(Q/2)1tan(P/2)tan(Q/2)=1b/a1c/a=1\Rightarrow \frac{ tan \, (P / 2 ) + tan \, (Q/2)}{ 1 - tan \, (P / 2) \, tan \, (Q/ 2)} = 1 \Rightarrow \frac{ - b/a}{ 1 - c/a } = 1
b/aaca=1bac=1\Rightarrow \frac{ - b/a}{\frac{a - c}{a}} = 1 \Rightarrow \frac{ - b}{ a - c} = 1
b=aca+b=c\Rightarrow -b = a - c \Rightarrow a + b = c