Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

In a triangle PQR,A,BPQR, A, B and CC are the angles opposite to the corresponding sides of lengths a,ba, b and cc respectively. If the sides are a=5a = 5 , b=13b = 13 and c=12c = 12 then sinB2+cosB2=sin \frac{B}{2} + cos \frac{B}{2} =

A

12\frac{1}{2}

B

12\frac{1}{\sqrt{2}}

C

2\sqrt{2}

D

11

Answer

2\sqrt{2}

Explanation

Solution

The correct option is(C): 2\sqrt{2}.

We have, a=5,b=13,c=12a=5, b=13, c=12
Here, a2+c2=52+122a^{2}+c^{2}=5^{2}+12^{2}
=169=132=b2=169=13^{2}=b^{2}
ΔPQR\therefore \Delta\, PQR is right triangle right angled at QQ
B=90\therefore B=90^{\circ}
Now, sin B2+cosB2\frac{B}{2}+cos \frac{B}{2}
=sin45+cos45=sin\, 45^{\circ} +cos\, 45^{\circ}
=12+12=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}
=2=\sqrt{2}