Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

In a triangle PQRP Q R, let a=QR,b=RP\vec{a}=\overrightarrow{Q R}, \vec{b}=\overrightarrow{R P} and c=PQ\vec{c}=\overrightarrow{P Q} If
a=3,b=4|\vec{a}|=3,|\vec{b}|=4 and a(cb)c(ab)=aa+b\frac{\vec{a} \cdot(\vec{c}-\vec{b})}{\vec{c} \cdot(\vec{a}-\vec{b})}=\frac{|\vec{a}|}{|\vec{a}|+|\vec{b}|} then the value of a×b2|\vec{a} \times \vec{b}|^{2} is

Answer

The Value of \text{The Value of } a×b2|\vec{a} \times \vec{b}|^{2} is\text{is} 108.\underline{108}.