Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

In a \triangle ABC w ith fixed base BC, the vertex A moves such that cos B + cos C = 4 sin2A2 sin^2 \frac{A}{2}. If a, b and c denote th e lengths of th e sides of th e triangle opposite to the angles A, B and C respectively, then

A

b + c - 4a

B

b + c - 2a

C

locus of point A is an ellipse

D

locus of point A is a pair of straight line

Answer

locus of point A is an ellipse

Explanation

Solution

Given, cos B + cos C = 4 sin2A2sin^2 \frac{A}{2}
2cos(B+C2)cos(BC2)=4sin2A2\Rightarrow 2 \, cos \, \bigg( \frac{ B + C }{2} \bigg) \, cos \, \bigg( \frac{ B - C }{2} \bigg) = 4 \, sin^2 \frac{A}{2}
2sinA2[cos(BC2)2sinA2]=0\Rightarrow 2 \, sin \, \frac{A}{2} \bigg [ cos \bigg( \frac{ B - C }{2} \bigg) - 2 \, sin \frac{A}{2} \bigg ] = 0
cos(BC2)2cos(B+C2)=0\Rightarrow cos \bigg( \frac{ B - C }{2} \bigg) - 2 \, cos \bigg( \frac{ B + C }{2} \bigg) = 0
as sin A20\frac{A}{2} \ne 0
cosB2cosC2+3sinB2sinC2=0\Rightarrow - cos \frac{ B }{2} \, cos \, \frac{C }{2} + 3 sin \, \frac{B}{2} \, sin \, \frac{C }{2} = 0
tanB2tanC2=13\Rightarrow tan \frac{B }{2} tan \, \frac{C}{2} = \frac{1}{3}
(sa)(sc)s(sb).(sb)(sa)s(sc)13\Rightarrow \sqrt{ \frac{ ( s - a) \, (s - c) }{ s \, (s - b) } . \frac{( s - b ) \, (s - a)}{ s \, (s - c)}} \frac{1}{3}
sas13\Rightarrow \frac{s - a}{s} \frac{1}{3}
2s=3a\Rightarrow 2s = 3a
b+c=2a\Rightarrow b + c = 2a .
\therefore Locus of A is an ellipse