Question
Mathematics Question on Trigonometric Equations
In a △ ABC w ith fixed base BC, the vertex A moves such that cos B + cos C = 4 sin22A. If a, b and c denote th e lengths of th e sides of th e triangle opposite to the angles A, B and C respectively, then
A
b + c - 4a
B
b + c - 2a
C
locus of point A is an ellipse
D
locus of point A is a pair of straight line
Answer
locus of point A is an ellipse
Explanation
Solution
Given, cos B + cos C = 4 sin22A
⇒2cos(2B+C)cos(2B−C)=4sin22A
⇒2sin2A[cos(2B−C)−2sin2A]=0
⇒cos(2B−C)−2cos(2B+C)=0
as sin 2A=0
⇒−cos2Bcos2C+3sin2Bsin2C=0
⇒tan2Btan2C=31
⇒s(s−b)(s−a)(s−c).s(s−c)(s−b)(s−a)31
⇒ss−a31
⇒2s=3a
⇒b+c=2a.
∴ Locus of A is an ellipse