Solveeit Logo

Question

Question: In a triangle ABC, the value of \(\sin A + \sin B + \sin C\) is...

In a triangle ABC, the value of sinA+sinB+sinC\sin A + \sin B + \sin C is

A

4sinA2sinB2sinC24\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

B

4cosA2cosB2cosC24\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}

C

4cosA2sinB2sinC24\cos\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

D

4cosA2sinB2cosC24\cos\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}

Answer

4cosA2cosB2cosC24\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}

Explanation

Solution

In ΔABC,A+B+C=180sinA+sinB+sinC=\Delta AB ⥂ C,A + B + C = 180{^\circ} \Rightarrow \sin A + \sin B + \sin C =

2sinA+B2cosAB2+2sinC2cosC22\sin\frac{A + B}{2}\cos\frac{A - B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}

=2sin(π2C2)cosAB2+2cosC2sin(π2A+B2)= 2\sin\left( \frac{\pi}{2} - \frac{C}{2} \right)\cos\frac{A - B}{2} + 2\cos\frac{C}{2}\sin\left( \frac{\pi}{2} - \frac{\overline{A + B}}{2} \right)

=2cosC2cosAB2+2cosC2cosA+B2= 2\cos\frac{C}{2}\cos\frac{A - B}{2} + 2\cos\frac{C}{2}\cos\frac{A + B}{2}

=2cosC2[cosAB2+cosA+B2]= 2\cos\frac{C}{2}\left\lbrack \cos\frac{A - B}{2} + \cos\frac{A + B}{2} \right\rbrack

=2cosC2(2cosA2cosB2)=4cosA2cosB2cosC2= 2\cos\frac{C}{2}\left( 2\cos\frac{A}{2}\cos\frac{B}{2} \right) = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} .