Question
Question: In a triangle ABC, the value of \(\sin A + \sin B + \sin C\) is...
In a triangle ABC, the value of sinA+sinB+sinC is
A
4sin2Asin2Bsin2C
B
4cos2Acos2Bcos2C
C
4cos2Asin2Bsin2C
D
4cos2Asin2Bcos2C
Answer
4cos2Acos2Bcos2C
Explanation
Solution
In ΔAB⥂C,A+B+C=180∘⇒sinA+sinB+sinC=
2sin2A+Bcos2A−B+2sin2Ccos2C
=2sin(2π−2C)cos2A−B+2cos2Csin(2π−2A+B)
=2cos2Ccos2A−B+2cos2Ccos2A+B
=2cos2C[cos2A−B+cos2A+B]
=2cos2C(2cos2Acos2B)=4cos2Acos2Bcos2C .