Solveeit Logo

Question

Physics Question on work, energy and power

In a triangle ABCABC, the sides ABAB and ACAC are represented by the vectors 3i^+j^+k^3 \hat{i} + \hat{j} + \hat{k} and i^+2j^+k^\hat{i} + 2 \hat{j} + \hat{k} respectively. Calculate the angle ABC\angle ABC

A

cos1511\cos^{-1} \sqrt{\frac{5}{11}}

B

cos1611\cos^{-1} \sqrt{\frac{6}{11}}

C

(90cos1511)\left( 90^{\circ} - \cos^{-1} \sqrt{\frac{5}{11}} \right)

D

(180cos1511)\left( 180^{\circ} - \cos^{-1} \sqrt{\frac{5}{11}} \right)

Answer

cos1511\cos^{-1} \sqrt{\frac{5}{11}}

Explanation

Solution


AB=3i^+j^+k^ and AC=i^+2j^+k^A B =3 \hat{ i }+\hat{ j }+\hat{ k } \text { and } A C =\hat{ i }+2 \hat{ j }+\hat{ k }
BA=(3i^+j^+k^)\therefore B A =-(3 \hat{ i }+\hat{ j }+\hat{ k })
ABC\angle A B C is angle between BAB A and BCB C

BC=AC+BAB C = A C + B A
=ACAB(BA=AB)= A C - A B (\because B A =- A B )
=i^+2j^+k^(3i^+j^+k^)=2i^+j^= \hat{i} + 2\hat{j} + \hat{k} - (3\hat{i} + \hat{j} + \hat{k}) = -2\hat{i} + \hat{j}
BABC=BABCcosθ\therefore BA \cdot BC = |BA||BC| \cos\,\theta
(3i^+j^+k^)(2i^+j^)-(3\hat{i} + \hat{j} + \hat{k}) \cdot (-2 \hat{i} + \hat{j})
=(32+12+12)(22+12)cosθ= (\sqrt{3^2 + 1^2 + 1^2)} \cdot (\sqrt{2^2 + 1^2}) \cos\,\theta
61=11×5costheta\Rightarrow 6 - 1 = \sqrt{11 \times 5} \cdot \cos\,theta
cosθ=555=511\therefore \cos \,\theta = \frac{5}{\sqrt{55}} = \sqrt{\frac{5}{11}}
=θ=cos1=511= \theta = \cos^{-1} = \sqrt{\frac{5}{11}}