Solveeit Logo

Question

Question: In a triangle ABC, the angle A is greater than the angle B. If the values of the angles A and B sati...

In a triangle ABC, the angle A is greater than the angle B. If the values of the angles A and B satisfy the equation 3sinx - 4sin3x - k =0, 0 <k< 1, then the measure of angle C is

A

π3\frac{\pi}{3}

B

π2\frac{\pi}{2}

C

2π3\frac{2\pi}{3}

D

5π6\frac{5\pi}{6}

Answer

2π3\frac{2\pi}{3}

Explanation

Solution

The given equation can be written as sin3x=k, 0<k<1\sin 3x = k,\text{ }0 < k < 1

Since A and B satisfy this equation

0<3A,0 < 3A, 3B < π as 0 < k < 1

Also sin3A=k=sin3B\sin 3A = k = \sin 3Bsin3Asin3B=0\sin 3A - \sin 3B = 0

2cos3(A+B)2sin3(AB)2=02\cos\frac{3(A + B)}{2}\sin\frac{3(A - B)}{2} = 0⇒ either cos3(A+B)2=0\cos\frac{3(A + B)}{2} = 0 or sin3(AB)2=0\sin\frac{3(A - B)}{2} = 0

But sin3(AB)20\sin\frac{3(A - B)}{2} \neq 0 as A > B and 0 < 3A, 3B < π so cos3(A+B)2=0\cos\frac{3(A + B)}{2} = 0

cos32(πC)=0\cos\frac{3}{2}(\pi - C) = 0

sin3C2=0\sin\frac{3C}{2} = 0C=2π3C = \frac{2\pi}{3}.