Solveeit Logo

Question

Question: In a triangle ABC, tan <img src="https://cdn.pureessence.tech/canvas_369.png?top_left_x=780&top_left...

In a triangle ABC, tan = 56\frac { 5 } { 6 }, tan C2\frac { \mathrm { C } } { 2 } = 25\frac { 2 } { 5 }, then –

A

a, c, b are in A.P.

B

a, b, c are in A.P.

C

b, a, c are in A.P.

D

a, b, c are in G.P.

Answer

a, b, c are in A.P.

Explanation

Solution

tan= 56\frac { 5 } { 6 } , tan C2\frac { \mathrm { C } } { 2 } = 25\frac { 2 } { 5 }

(sb)(sc)s(sa)\sqrt { \frac { ( \mathrm { s } - \mathrm { b } ) ( \mathrm { s } - \mathrm { c } ) } { \mathrm { s } ( \mathrm { s } - \mathrm { a } ) } } = 56\frac { 5 } { 6 } …….. (1)

(sa)(sb)s(sc)\sqrt { \frac { ( \mathrm { s } - \mathrm { a } ) ( \mathrm { s } - \mathrm { b } ) } { \mathrm { s } ( \mathrm { s } - \mathrm { c } ) } } =25\frac { 2 } { 5 } …….. (2)

(1) × (2)

= 56\frac { 5 } { 6 }×25\frac { 2 } { 5 }

×(2a+b+c)\left( \frac { 2 } { a + b + c } \right) = 13\frac { 1 } { 3 }

̃ 3a – 3b + 3c = a + b + c

̃ 2a + 2c = 4b

̃ a + c = 2b

̃ a + c = 2b

̃ a, b, c are in A.P.