Solveeit Logo

Question

Question: In a triangle ABC, Show that \(\dfrac{{1 + \cos (A - B)\cos C}}{{1 + \cos (A - C)\cos B}} = \dfrac{{...

In a triangle ABC, Show that 1+cos(AB)cosC1+cos(AC)cosB=a2+b2a2+c2\dfrac{{1 + \cos (A - B)\cos C}}{{1 + \cos (A - C)\cos B}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}} .

Explanation

Solution

Hint: We have to know the basic formulae of trigonometric functions to solve this problem. In a triangle sum of all angles equal to 180=π  radians180^\circ = \pi \;radians.

Let’s take LHS of the given equation 1+cos(AB)cosC1+cos(AC)cosB\dfrac{{1 + \cos (A - B)\cos C}}{{1 + \cos (A - C)\cos B}}
1cos(AB)cos(A+B)1cos(AC)cos(A+C)\dfrac{{1 - \cos (A - B)\cos (A + B)}}{{1 - \cos (A - C)\cos (A + C)}}
[ A+B+C=π\because A + B + C = \pi so that cosC=cos(A+B)\cos C = - \cos (A + B)]
=1(cos2Asin2B)1(cos2Asin2C)= \dfrac{{1 - \left( {{{\cos }^2}A - {{\sin }^2}B} \right)}}{{1 - \left( {{{\cos }^2}A - {{\sin }^2}C} \right)}}
=sin2A+sin2Bsin2A+sin2C=a2+b2a2+c2= \dfrac{{{{\sin }^2}A + {{\sin }^2}B}}{{{{\sin }^2}A + {{\sin }^2}C}} = \dfrac{{{a^2} + {b^2}}}{{{a^2} + {c^2}}}
LHS=RHS
Hence proved.

Note:
Given triangle ABC, sum of angles A+B+C=πA + B + C = \pi
C=π(A+B)  or  B=π(A+C)\Rightarrow C = \pi - (A + B)\;or\;B = \pi - (A + C)
Since cos is negative in second quadrant cos(πθ)=cosθ\cos (\pi - \theta ) = - \cos \theta
We used the trigonometric identity i.e., sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1.