Question
Question: In a triangle ABC, Show that \(\dfrac{{1 + \cos (A - B)\cos C}}{{1 + \cos (A - C)\cos B}} = \dfrac{{...
In a triangle ABC, Show that 1+cos(A−C)cosB1+cos(A−B)cosC=a2+c2a2+b2 .
Explanation
Solution
Hint: We have to know the basic formulae of trigonometric functions to solve this problem. In a triangle sum of all angles equal to 180∘=πradians.
Let’s take LHS of the given equation 1+cos(A−C)cosB1+cos(A−B)cosC
1−cos(A−C)cos(A+C)1−cos(A−B)cos(A+B)
[ ∵A+B+C=π so that cosC=−cos(A+B)]
=1−(cos2A−sin2C)1−(cos2A−sin2B)
=sin2A+sin2Csin2A+sin2B=a2+c2a2+b2
LHS=RHS
Hence proved.
Note:
Given triangle ABC, sum of angles A+B+C=π
⇒C=π−(A+B)orB=π−(A+C)
Since cos is negative in second quadrant cos(π−θ)=−cosθ
We used the trigonometric identity i.e., sin2θ+cos2θ=1.