Solveeit Logo

Question

Question: In a triangle ABC, r<sup>2</sup> + r<sub>1</sub><sup>2</sup> + r<sub>2</sub><sup>2</sup> + r<sub>3</...

In a triangle ABC, r2 + r12 + r22 + r32 + a2 + b2 + c2 is equal to–

A

4R2

B

8R2

C

12R2

D

16R2

Answer

16R2

Explanation

Solution

Here, r2 + r12 + r22 + a2 + b2 + c2

= r2 + (r1 + r2 + r3)2 – 2(r1r2 + r2r3 + r1r3)

+ (a + b + c)2 – 2 (ab + bc + ca)

= r2 + (4R + r)2 – 2s2 + 4s2 – 2 (ab + bc + ca)

= 2r2 + 16R2 + 8rR + 2s2 – 2 (ab + bc + ca)

= 16R2 + + + 2s2 – 2 (ab + bc + ca)

= 16R2 + + 2abc + 2s2 –2(ab + bc + ca)

= 16R2 + 2s2 – s. 4s + 2 (ab + bc + ca) + 2s2 –2(ab + bc + ca)

= 16R2.