Solveeit Logo

Question

Question: In a triangle $ABC$, right angled at $A$, on the leg $AC$ as diameter, a semicircle is described. If...

In a triangle ABCABC, right angled at AA, on the leg ACAC as diameter, a semicircle is described. If a chord joins AA with the point of intersection DD of the hypotenuse and the semicircle, then the length of ACAC equals to

A

AB.ADAB+AD\frac{AB.AD}{AB + AD}

B

ABADAB2AD2\frac{AB \cdot AD}{\sqrt{AB^2 - AD^2}}

C

AB.ADAB2+AD2\frac{AB. AD}{\sqrt{AB^2 + AD^2}}

D

AB.AD\sqrt{AB. AD}

Answer

B ABADAB2AD2\frac{AB \cdot AD}{\sqrt{AB^2 - AD^2}}

Explanation

Solution

Explanation:
Place the right‐angled triangle with vertex A at the origin, letting AC = x (on the x–axis) and AB = b (on the y–axis). Then C = (x, 0) and B = (0, b). The semicircle with AC as diameter has center (x/2, 0) and radius x/2, so its equation is

(Xx2)2+Y2=(x2)2.\left(X-\frac{x}{2}\right)^2+Y^2=\left(\frac{x}{2}\right)^2.

The hypotenuse BC joining B(0, b) and C(x, 0) has equation

y=bbxX.y=b-\frac{b}{x}X.

Let D = (d,, b-\frac{b}{x}d) be the other point (apart from C) where the hypotenuse meets the semicircle. Substituting the line’s coordinates into the circle’s equation and then factoring out the obvious solution d=xd=x (which corresponds to C), one finds the coordinate of D to be

d=xb2x2+b2andyD=x2bx2+b2.d=\frac{x\,b^2}{x^2+b^2}\quad \text{and}\quad y_D=\frac{x^2\,b}{x^2+b^2}.

The length of the chord AD is:

AD=d2+yD2=x2b4+x4b2(x2+b2)2=xbx2+b2.AD=\sqrt{d^2+y_D^2}=\sqrt{\frac{x^2\,b^4+x^4\,b^2}{(x^2+b^2)^2}}=\frac{x\,b}{\sqrt{x^2+b^2}}.

Since AB=bAB=b and the hypotenuse BC=x2+b2BC=\sqrt{x^2+b^2}, the relation becomes:

AD=xABx2+AB2.AD=\frac{x\cdot AB}{\sqrt{x^2+AB^2}}.

Solving for xx (which is AC), we get:

ADx2+AB2=xAB.AD\,\sqrt{x^2+AB^2}=x\,AB.

Squaring both sides,

AD2(x2+AB2)=x2AB2x2(AB2AD2)=AD2AB2.AD^2\,(x^2+AB^2)=x^2\,AB^2\quad\Longrightarrow\quad x^2(AB^2-AD^2)=AD^2\,AB^2.

Thus,

x2=AD2AB2AB2AD2x=ABADAB2AD2.x^2=\frac{AD^2\,AB^2}{AB^2-AD^2}\quad\Longrightarrow\quad x=\frac{AB\cdot AD}{\sqrt{AB^2-AD^2}}.

Answer:
The length of AC is ABADAB2AD2\displaystyle \frac{AB\cdot AD}{\sqrt{AB^2-AD^2}}, that is, Option B.