Solveeit Logo

Question

Question: In a triangle ABC, medians AD and CE are drawn. If AD = 5, ∠DAC =\(\frac { \pi } { 4 }\), the area o...

In a triangle ABC, medians AD and CE are drawn. If AD = 5, ∠DAC =π4\frac { \pi } { 4 }, the area of triangle ABC is –

A

15/7

B

25/3

C

25/6

D

None of these

Answer

25/3

Explanation

Solution

Let O be the point of intersection of the medians of triangle ∆ABC shown in the figure. Then the area of ∆ABC is three times that of ∆AOC, because O being the centroid of ∆ABC.

It divides of median through B in the ratio 2 : 1 and the height of ∆AOC is one-third that of ∆ABC

Now, in ∆AOC, AO = 10/3 AD = 10/3.

Applying the sine rule to ∆AOC, we get

OCsinπ8\frac { \mathrm { OC } } { \sin \frac { \pi } { 8 } } = AOsinπ4\frac { \mathrm { AO } } { \sin \frac { \pi } { 4 } }

⇒ OC =103\frac { 10 } { 3 } sin(π8)sin(π4)\frac { \sin \left( \frac { \pi } { 8 } \right) } { \sin \left( \frac { \pi } { 4 } \right) }

∴ Area of ∆AOC = 12\frac { 1 } { 2 } . AO . OC. sin ∠AOC

= 12103103sin(π/8)sin(π/4)\frac { 1 } { 2 } \cdot \frac { 10 } { 3 } \cdot \frac { 10 } { 3 } \cdot \frac { \sin ( \pi / 8 ) } { \sin ( \pi / 4 ) } .sin (π2+π8)\left( \frac { \pi } { 2 } + \frac { \pi } { 8 } \right)

= 509\frac { 50 } { 9 } .sin(π/8)cos(π/8)sin(π/4)\frac { \sin ( \pi / 8 ) \cos ( \pi / 8 ) } { \sin ( \pi / 4 ) }=5018\frac { 50 } { 18 }= 259\frac { 25 } { 9 }

⇒ Area of ABC = 3×259\frac { 3 \times 25 } { 9 } = 253\frac { 25 } { 3 } .