Solveeit Logo

Question

Question: In a triangle ABC, let \(\angle C = \frac { \pi } { 2 }\). If r is the in radius and R is the circum...

In a triangle ABC, let C=π2\angle C = \frac { \pi } { 2 }. If r is the in radius and R is the circum-radius of the triangle, then 2(r+R)2 ( r + R ) is equal to

A

a+ba + b

B

b+cb + c

C

c+ac + a

D

a+b+ca + b + c

Answer

a+ba + b

Explanation

Solution

csinC=2R\frac { c } { \sin C } = 2 R , ∴ c=2Rsin90=2Rc = 2 R \sin 90 ^ { \circ } = 2 R

Also r=(sc)tanC2=(sc)r = ( s - c ) \tan \frac { C } { 2 } = ( s - c ) [tan45=1]\left[ \because \tan 45 ^ { \circ } = 1 \right]

2r=2s2c=a+bc=a+b2R2 r = 2 s - 2 c = a + b - c = a + b - 2 R, 2(r+R)=a+b2 ( r + R ) = a + b.