Solveeit Logo

Question

Mathematics Question on Some Applications of Trigonometry

In a triangle ABCABC, let AB=23,BC=3AB =\sqrt{23}, BC =3 and CA=4CA =4. Then the value of cotA+cotCcotB\frac{\cot A +\cot C }{\cot B } is ______

Answer

We have, c=23c = \sqrt{23}, a = 3 and b = 4

Now cotA+cotCcotB=cosAsinA+cosCsinCcosBsinB\frac{\cot A + \cot C}{\cot B} = \frac{\frac{\cos A}{\sin A} + \frac{\cos C}{\sin C}}{\frac{\cos B}{\sin B}}

= (b2+c2a22bcsinA+a2+b2c22absinC)c2+a2b22acsinB\frac{\left(\frac{b^2 + c^2 - a^2}{2bc} \sin A + \frac{a^2 + b^2 - c^2}{2ab} \sin C\right)}{\frac{c^2 + a^2 - b^2}{2ac} \sin B}

=b2+c2a24Δ+a2+b2c24Δc2+a2b24Δ\frac{\frac{b^2 + c^2 - a^2}{4\Delta} + \frac{a^2 + b^2 - c^2}{4\Delta}}{\frac{c^2 + a^2 - b^2}{4\Delta}}

= 2b2a2+c2b2\frac{2b^2}{a^2+c^2-b^2}

=2= 2