Question
Question: In a triangle ABC, \(\angle B = \frac { \pi } { 3 }\) and \(\angle C = \frac { \pi } { 4 }\) andD d...
In a triangle ABC, ∠B=3π and ∠C=4π andD divides BC
internally in the ratio 1 : 3. Then sin∠CADsin∠BAD is equal to
A
31
B
31
C
61
D
32
Answer
61
Explanation
Solution
Let ∠BAD=α,∠CAD=β
In △ADB, applying sine formulae, we get
sinαx=sin(3π)AD ........(i)
In △ADC applying sine formulae, we get,
sinβ3x=sin(4π)AD ..........(ii)
Dividing (i) by (ii), we get,
⇒ sinαx×3xsinβ=sin(3π)AD×ADsin(4π) ⇒ 3sinαsinβ=2321=32
⇒ sinαsinβ=332=6
∴ sin∠CADsin∠BAD=sinβsinα=61
