Solveeit Logo

Question

Question: In a triangle ABC if tan A/2 **=** \(\frac { 5 } { 6 }\)& tan \(\frac { \mathrm { C } } { 2 }\) = ...

In a triangle ABC if tan A/2 = 56\frac { 5 } { 6 }& tan C2\frac { \mathrm { C } } { 2 } = 25\frac { 2 } { 5 } , then –

A

a, c, b are in A.P.

B

a, b, c are in A.P.

C

b, a, c are in A.P.

D

a, b, c are in G.P.

Answer

a, b, c are in A.P.

Explanation

Solution

tan tan C2\frac { \mathrm { C } } { 2 } = 26\frac { 2 } { 6 } = 13\frac { 1 } { 3 }

= 13\frac { 1 } { 3 }

sbs\frac { s - b } { s } = 13\frac { 1 } { 3 }

⇒ 3s – 3b = s ⇒ 2s = 3b ⇒ a + b + c = 3b

⇒ a + c = 2b